Ford 6R transmission

From The Right Wiki
Jump to navigationJump to search
6R
File:ZF Automatik 6HP26.JPG
Automatic Transmission ZF 6HP 26 cutaway
Overview
ManufacturerFord Motor Company
Production2005–present
Model years2005–present
Body and chassis
Class6-speed longitudinal automatic transmission
RelatedGM 6L
ZF 6HP
Aisin AWTF-80 SC
Chronology
PredecessorFord AOD
SuccessorFord 10R 60 · 10R 80 · 10R 140

The 6R is a 6-speed automatic transmission for longitudinal engine placement in rear-wheel drive vehicles. It is based on the ZF 6HP26 transmission[1] and has been built under license by the Ford Motor Company at its Livonia Transmission plant in Livonia, Michigan. The 6R debuted in 2005 for the 2006 model year Ford Explorer and Mercury Mountaineer. The 6R 80 was available in 2009–2017 Ford F-150 trucks (and 2018–2020 only paired with the 3.3L V6 engine). It features an integrated "Tow/Haul" mode for enhanced engine braking and towing performance. For the 2011 model year, the transmission was revised to provide smoother shifts, improved fuel economy, and overall better shift performance. Most notable of the improvements was the addition of a one-way clutch that provided smoother 1–2 up-shifts and 2–1 down-shifts. The transmission has a relatively low 1st gear and two overdrive gears, the highest of which is 0.69:1. This provides exceptional towing performance when needed, while maximizing fuel economy by offering low engine speeds while cruising. The 6R 80 can be found behind the 3.7L V6 all the way up to the 6.2L V8. Ford has stated that while the transmission is used in multiple applications, each transmission is optimized and integrated differently depending on the engine it is mated to. The 6R 80 features "Filled for Life" low viscosity synthetic transmission fluid (MERCON LV), though a fluid flush is recommended at 150,000 mi (241,000 km) if your truck falls under the classification of "Severe Duty" operation. The transmission, as used in the Ford F-150, has a fluid capacity of 13.1 US qt (12.4 L) and weighs 215 lb (98 kg).

Gear Ratios[lower-alpha 1]
Gear
Model
R 1 2 3 4 5 6 Total
Span
Span
Center
Avg.
Step
Compo-
nents
Ford 6R 60 · 6R 80 · 2005 −3.403 4.171 2.340 1.521 1.143 0.867 0.691 6.035 1.698 1.433 3 Gearsets
2 Brakes
3 Clutches
Ford 6R 140 · 2005 −3.128 3.974 2.318 1.516 1.149 0.858 0.674 5.899 1.636 1.426
ZF 6HP All · 2000[lower-alpha 2] −3.403 4.171 2.340 1.521 1.143 0.867 0.691 6.035 1.698 1.433
  1. Differences in gear ratios have a measurable, direct impact on vehicle dynamics, performance, waste emissions as well as fuel mileage
  2. for comparison purposes only

Specifications

Basic concept

A conventional planetary gearset and a compound Ravigneaux gearset is combined in a Lepelletier gear mechanism,[2] to reduce both the size and weight. It was first realized with the 6HP from ZF Friedrichshafen. Like all transmissions realized with Lepelletier transmissions, the 6R also dispenses with the use of the direct gear ratio, making it one of the very few automatic transmission concepts without such a ratio. It also has the capability to achieve torque converter lock-up on all 6 forward gears, and disengage it completely when at a standstill, significantly closing the fuel efficiency gap between automatic and manual transmissions.

Final Drive
Car Type Ratio
4.10
3.73
3.55
3.31
3.15
2.73
Gear Ratios
With Assessment[lower-alpha 1][lower-alpha 2] Planetary Gearset: Teeth[lower-alpha 3]
Lepelletier Gear Mechanism
Count Total[lower-alpha 4]
Center[lower-alpha 5]
Avg.[lower-alpha 6]
Simple Ravigneaux
Mfr.
Model
Version
First Delivery
S1[lower-alpha 7]
R1[lower-alpha 8]
S2[lower-alpha 9]
R2[lower-alpha 10]
S3[lower-alpha 11]
R3[lower-alpha 12]
Brakes
Clutches
Ratio
Span
Gear
Step[lower-alpha 13]
Gear
Ratio
R
iR
1
i1
2
i2
3
i3
4
i4
5
i5
6
i6
Step[lower-alpha 13] iRi1[lower-alpha 14] i1i1 i1i2[lower-alpha 15] i2i3 i3i4 i4i5 i5i6
Δ Step[lower-alpha 16][lower-alpha 17] i1i2:i2i3 i2i3:i3i4 i3i4:i4i5 i4i5:i5i6
Shaft
Speed
i1iR i1i1 i1i2 i1i3 i1i4 i1i5 i1i6
Δ Shaft
Speed[lower-alpha 18]
0i1iR i1i10 i1i2i1i1 i1i3i1i2 i1i4i1i3 i1i5i1i4 i1i6i1i5
Ford
6R 60
6R 80
600 N⋅m (443 lb⋅ft)
800 N⋅m (590 lb⋅ft)
2005 (both)
37
71
31
38
38
85
2
3
6.0354
1.6977
1.4327[lower-alpha 13]
Gear
Ratio
−3.4025[lower-alpha 14]
4,5901,349
4.1708
9,1802,201
2.3397[lower-alpha 15]
211,14090,241
1.5211
10871
1.1428[lower-alpha 17][lower-alpha 18]
9,1808,033
0.8672
4,5905,293
0.6911
85123
Step 0.8158[lower-alpha 14] 1.0000 1.7826[lower-alpha 15] 1.5382 1.3311 1.3178 1.2549
Δ Step[lower-alpha 16] 1.1589 1.1559 1.0101[lower-alpha 17] 1.0502
Speed -1.2258 1.0000 1.7826 2.7419 3.6497 4.8096 6.0354
Δ Speed 1.2258 1.0000 0.7826 0.9593 0.9078[lower-alpha 18] 1.1599 1.2258
Ford
6R 140
1,400 N⋅m (1,033 lb⋅ft)
2005
49
95
37
47
47
97
2
3
5.8993
1.6361
1.4261[lower-alpha 13]
Gear
Ratio
−3.1283[lower-alpha 14]
13,9684,485
3.9738
13,9683,515
2.3181[lower-alpha 15][lower-alpha 17]
8,1483,515
1.5158
14495
1.1492[lower-alpha 17][lower-alpha 18]
13,96812,155
0.8585
13,96816,271
0.6736
97144
Step 0.7872[lower-alpha 14] 1.0000 1.7143[lower-alpha 15] 1.5293 1.3190 1.3389 1.2744
Δ Step[lower-alpha 16] 1.1210[lower-alpha 17] 1.1594 0.9854[lower-alpha 17] 1.0504
Speed -1.2703 1.0000 1.7143 2.6216 3.4580 4.6290 5.8993
Δ Speed 1.2703 1.0000 0.7143 0.9073 0.8364[lower-alpha 18] 1.1710 1.2703
ZF 6HP All[lower-alpha 2] · 2000[lower-alpha 19] 37
71
31
38
38
85
2
3
6.0354
1.6977
1.4327[lower-alpha 13]
Gear
Ratio
−3.4025[lower-alpha 14] 4.1708 2.3397[lower-alpha 15] 1.5211 1.1428[lower-alpha 17][lower-alpha 18] 0.8672 0.6911
Ratio
R & Even
R3(S1+R1)R1S3 R3(S1+R1)(S2+R2)R1S2(S3+R3) R2R3(S1+R1)R2R3(S1+R1)S1S2S3 R3S3+R3
Ratio
Odd
R2R3(S1+R1)R1S2S3 S1+R1R1 R3(S1+R1)R3(S1+R1)+S1S3
Algebra And Actuated Shift Elements
Brake A[lower-alpha 20]
Brake B[lower-alpha 21]
Clutch C[lower-alpha 22]
Clutch D[lower-alpha 23]
Clutch E[lower-alpha 24]
  1. All 6R-transmissions are based on the Lepelletier gear mechanism, first realized in the ZF 6HP 26 gearbox
  2. 2.0 2.1 Other gearboxes using the Lepelletier gear mechanism see infobox
  3. Layout
    • Input and output are on opposite sides
    • Planetary gearset 1 is on the input (turbine) side
    • Input shafts are R1 and, if actuated, C2/C3 (the combined carrier of the compound Ravigneaux gearset 2 and 3)
    • Output shaft is R3 (ring gear of gearset 3: outer Ravigneaux gearset)
  4. Total Ratio Span (Total Ratio Spread · Total Gear Ratio)
    • ini1
    • A wider span enables the
      • downspeeding when driving outside the city limits
      • increase the climbing ability
        • when driving over mountain passes or off-road
        • or when towing a trailer
  5. Ratio Span's Center
    • (ini1)12
    • The center indicates the speed level of the transmission
    • Together with the final drive ratio
    • it gives the shaft speed level of the vehicle
  6. Average Gear Step
    • (ini1)1n1
    • With decreasing step width
      • the gears connect better to each other
      • shifting comfort increases
  7. Sun 1: sun gear of gearset 1
  8. Ring 1: ring gear of gearset 1
  9. Sun 2: sun gear of gearset 2: inner Ravigneaux gearset
  10. Ring 2: ring gear of gearset 2: inner Ravigneaux gearset
  11. Sun 3: sun gear of gearset 3: outer Ravigneaux gearset
  12. Ring 3: ring gear of gearset 3: outer Ravigneaux gearset
  13. 13.0 13.1 13.2 13.3 13.4 Standard 50:50
    — 50 % Is Above And 50 % Is Below The Average Gear Step —
    • With steadily decreasing gear steps (yellow highlighted line Step)
    • and a particularly large step from 1st to 2nd gear
      • the lower half of the gear steps (between the small gears; rounded down, here the first 2) is always larger
      • and the upper half of the gear steps (between the large gears; rounded up, here the last 3) is always smaller
    • than the average gear step (cell highlighted yellow two rows above on the far right)
    • lower half: smaller gear steps are a waste of possible ratios (red bold)
    • upper half: larger gear steps are unsatisfactory (red bold)
  14. 14.0 14.1 14.2 14.3 14.4 14.5 Standard R:1
    — Reverse And 1st Gear Have The Same Ratio —
    • The ideal reverse gear has the same transmission ratio as 1st gear
      • no impairment when maneuvering
      • especially when towing a trailer
      • a torque converter can only partially compensate for this deficiency
    • Plus 11.11 % minus 10 % compared to 1st gear is good
    • Plus 25 % minus 20 % is acceptable (red)
    • Above this is unsatisfactory (bold)
  15. 15.0 15.1 15.2 15.3 15.4 15.5 Standard 1:2
    — Gear Step 1st To 2nd Gear As Small As Possible —
    • With continuously decreasing gear steps (yellow marked line Step)
    • the largest gear step is the one from 1st to 2nd gear, which
      • for a good speed connection and
      • a smooth gear shift
    • must be as small as possible
      • A gear ratio of up to 1.6667:1 (5:3) is good
      • Up to 1.7500:1 (7:4) is acceptable (red)
      • Above is unsatisfactory (bold)
  16. 16.0 16.1 16.2 From large to small gears (from right to left)
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Standard STEP
    — From Large To Small Gears: Steady And Progressive Increase In Gear Steps —
    • Gear steps should
      • increase: Δ Step (first green highlighted line Δ Step) is always greater than 1
      • As progressive as possible: Δ Step is always greater than the previous step
    • Not progressively increasing is acceptable (red)
    • Not increasing is unsatisfactory (bold)
  18. 18.0 18.1 18.2 18.3 18.4 18.5 Standard SPEED
    — From Small To Large Gears: Steady Increase In Shaft Speed Difference —
    • Shaft speed differences should
      • increase: Δ Shaft Speed (second line marked in green Δ (Shaft) Speed) is always greater than the previous one
    • 1 difference smaller than the previous one is acceptable (red)
    • 2 consecutive ones are a waste of possible ratios (bold)
  19. First gearbox on the market to use the Lepelletier gear mechanism
    for comparison purposes only
  20. Blocks R2 and S3
  21. Blocks C2 (carrier 2) and C3 (carrier 3)
  22. Couples C1 (carrier 1) and S2
  23. Couples C1 (carrier 1) with R2 and S3
  24. Couples R1 with C2 (carrier 2) and C3 (carrier 3)

Applications

6R 60

  • 2006–2008 Ford Explorer/Mercury Mountaineer w/ 4.6L V8

6R 75

  • 2007–2008 Ford Expedition

6R 80

See also

References

  1. "2011 Ford Territory's Diesel Heart Revealed". The Motor Report. 2011-03-09. Retrieved 2011-04-06.
  2. Riley, Mike (2013-09-01). "Lepelletier Planetary System". Transmission Digest. Archived from the original on 2023-06-21. Retrieved 2023-03-03.
  3. "Review: Ford SZ Territory (2011–16)". AustralianCar.Reviews. Archived from the original on 18 October 2015. Retrieved 2 August 2016.

External links