Fundamental group scheme

From The Right Wiki
Jump to navigationJump to search

In mathematics, the fundamental group scheme is a group scheme canonically attached to a scheme over a Dedekind scheme (e.g. the spectrum of a field or the spectrum of a discrete valuation ring). It is a generalisation of the étale fundamental group. Although its existence was conjectured by Alexander Grothendieck, the first proof of its existence is due, for schemes defined over fields, to Madhav Nori.[1][2][3] A proof of its existence for schemes defined over Dedekind schemes is due to Marco Antei, Michel Emsalem and Carlo Gasbarri.[4][5]

History

The (topological) fundamental group associated with a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. Although it is still being studied for the classification of algebraic varieties even in algebraic geometry, for many applications the fundamental group has been found to be inadequate for the classification of objects, such as schemes, that are more than just topological spaces. The same topological space may have indeed several distinct scheme structures, yet its topological fundamental group will always be the same. Therefore, it became necessary to create a new object that would take into account the existence of a structural sheaf together with a topological space. This led to the creation of the étale fundamental group, the projective limit of all finite groups acting on étale coverings of the given scheme X. Nevertheless, in positive characteristic the latter has obvious limitations, since it does not take into account the existence of group schemes that are not étale (e.g., αp when the characteristic is p>0) and that act on torsors over X, a natural generalization of the coverings. It was from this idea that Grothendieck hoped for the creation of a new true fundamental group (un vrai groupe fondamental, in French), the existence of which he conjectured, back in the early 1960s in his celebrated SGA 1, Chapitre X. More than a decade had to pass before a first result on the existence of the fundamental group scheme came to light. As mentioned in the introduction this result was due to Madhav Nori who in 1976 published his first construction of this new object π1(X,x) for schemes defined over fields. As for the name he decided to abandon the true fundamental group name and he called it, as we know it nowadays, the fundamental group scheme.[1] It is also often denoted as πN(X,x), where N stands for Nori, in order to distinguish it from the previous fundamental groups and to its modern generalizations. The demonstration of the existence of π1(X,x) defined on regular schemes of dimension 1 had to wait about forty more years. There are various generalizations such as the S-fundamental group scheme[6] πS(X,x) and the quasi finite fundamental group scheme πqf(X,x).[4]

Definition and construction

The original definition and the first construction have been suggested by Nori for schemes X over fields. Then they have been adapted to a wider range of schemes. So far the only complete theories exist for schemes defined over schemes of dimension 0 (spectra of fields) or dimension 1 (Dedekind schemes) so this is what will be discussed hereafter:

Definition

Let S be a Dedekind scheme (which can be the spectrum of a field) and f:XS a faithfully flat morphism, locally of finite type. Assume f has a section xX(S). We say that X has a fundamental group scheme π1(X,x) if there exist a pro-finite and flat π1(X,x)-torsor X^X, with a section x^X^x(S) such that for any finite G-torsor YX with a section yYx(S) there is a unique morphism of torsors X^Y sending x^ to y.[2][4]

Over a field

There are nowadays several existence results for the fundamental group scheme of a scheme X defined over a field k. Nori provides the first existence theorem when k is perfect and XSpec(k) is a proper morphism of schemes with X reduced and connected scheme. Assuming the existence of a section x:Spec(k)X, then the fundamental group scheme π1(X,x) of X in x is built as the affine group scheme naturally associated to the neutral tannakian category (over k) of essentially finite vector bundles over X.[1] Nori also proves a that the fundamental group scheme exists when k is any field and X is any finite type, reduced and connected scheme over k. In this situation however there are no tannakian categories involved. [2] Since then several other existence results have been added, including some non reduced schemes.

Over a Dedekind scheme

Let S be a Dedekind scheme of dimension 1, X any connected scheme and XS a faithfully flat morphism locally of finite type. Assume the existence of a section x:SX. Then the existence of the fundamental group scheme π1(X,x) as a group scheme over S has been proved by Marco Antei, Michel Emsalem and Carlo Gasbarri in the following situations:[4]

  • when for every sS the fibres Xs are reduced
  • when for every xXXη the local ring 𝒪x is integrally closed (e.g. when X is normal).

Over a Dedekind scheme, however, there is no need to only consider finite group schemes: indeed quasi-finite group schemes are also a very natural generalization of finite group schemes over fields.[7] This is why Antei, Emsalem and Gasbarri also defined the quasi-finite fundamental group scheme πqf(X,x) as follows: let S be a Dedekind scheme and f:XS a faithfully flat morphism, locally of finite type. Assume f has a section xX(S). We say that X has a quasi-finite fundamental group scheme πqf(X,x) if there exist a pro-quasi-finite and flat πqf(X,x)-torsor X^X, with a section x^X^x(S) such that for any quasi-finite G-torsor YX with a section yYx(S) there is a unique morphism of torsors X^Y sending x^ to y.[4] They proved the existence of πqf(X,x) when for every sS the fibres Xs are integral and normal.

Properties

Connections with the étale fundamental group

One can consider the largest pro-étale quotient of π1(X,x). When the base scheme S is the spectrum of an algebraically closed field k then it coincides with the étale fundamental group πét(X,x). More precisely the group of points π1(X,x)(k) is isomorphic to πét(X,x).[8]

The product formula

For X and Y any two smooth projective schemes over an algebraically closed field k the product formula holds, that is π1(X,x)×kπ1(Y,y)π1(X×kY,x×ky).[9] This result was conjectured by Nori[1] and proved by Vikram Mehta and Subramanian.

Notes

  1. 1.0 1.1 1.2 1.3 Nori, Madhav V. (1976). "On the Representations of the Fundamental Group" (PDF). Compositio Mathematica. 33 (1): 29–42. MR 0417179. Zbl 0337.14016.
  2. 2.0 2.1 2.2 Nori, Madhav V. (1982). "The fundamental group-scheme". Proceedings Mathematical Sciences. 91 (2): 73–122. doi:10.1007/BF02967978. S2CID 121156750.
  3. Szamuely, Tamás (2009). Galois Groups and Fundamental Groups. doi:10.1017/CBO9780511627064. ISBN 9780521888509.
  4. 4.0 4.1 4.2 4.3 4.4 Antei, Marco; Emsalem, Michel; Gasbarri, Carlo (2020). "Sur l'existence du schéma en groupes fondamental". Épijournal de Géométrie Algébrique. arXiv:1504.05082. doi:10.46298/epiga.2020.volume4.5436. S2CID 227029191.
  5. Antei, Marco; Emsalem, Michel; Gasbarri, Carlo (2020). "Erratum for "Heights of vector bundles and the fundamental group scheme of a curve"". Duke Mathematical Journal. 169 (16). doi:10.1215/00127094-2020-0065. S2CID 225148904.
  6. Langer, Adrian (2011). "On the S-fundamental group scheme". Annales de l'Institut Fourier. 61 (5): 2077–2119. arXiv:0905.4600. doi:10.5802/aif.2667. S2CID 53506862.
  7. Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel (1990). Néron Models. doi:10.1007/978-3-642-51438-8. ISBN 978-3-642-08073-9.
  8. Deligne, P.; Milne, J. S. (1982). Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics. Vol. 900. doi:10.1007/978-3-540-38955-2. ISBN 978-3-540-11174-0.
  9. Mehta, V.B.; Subramanian, S. (2002). "On the fundamental group scheme". Inventiones Mathematicae. 148 (1): 143–150. Bibcode:2002InMat.148..143M. doi:10.1007/s002220100191. S2CID 121329868.