Golden–Thompson inequality

From The Right Wiki
Jump to navigationJump to search

In physics and mathematics, the Golden–Thompson inequality is a trace inequality between exponentials of symmetric and Hermitian matrices proved independently by Golden (1965) and Thompson (1965). It has been developed in the context of statistical mechanics, where it has come to have a particular significance.

Statement

The Golden–Thompson inequality states that for (real) symmetric or (complex) Hermitian matrices A and B, the following trace inequality holds:

treA+Btr(eAeB).

This inequality is well defined, since the quantities on either side are real numbers. For the expression on the right hand side of the inequality, this can be seen by rewriting it as tr(eA/2eBeA/2) using the cyclic property of the trace.

Motivation

The Golden–Thompson inequality can be viewed as a generalization of a stronger statement for real numbers. If a and b are two real numbers, then the exponential of a+b is the product of the exponential of a with the exponential of b:

ea+b=eaeb.

If we replace a and b with commuting matrices A and B, then the same inequality eA+B=eAeB holds. This relationship is not true if A and B do not commute. In fact, Petz (1994) proved that if A and B are two Hermitian matrices for which the Golden–Thompson inequality is verified as an equality, then the two matrices commute. The Golden–Thompson inequality shows that, even though eA+B and eAeB are not equal, they are still related by an inequality.

Generalizations

The Golden–Thompson inequality generalizes to any unitarily invariant norm. If A and B are Hermitian matrices and is a unitarily invariant norm, then

eA+BeA/2eBeA/2.

The standard Golden–Thompson inequality is a special case of the above inequality, where the norm is the Schatten norm with p=1. Since eA+B and eA/2eBeA/2 are both positive semidefinite matrices, tr(eA+B)=eA+B1 and tr(eA/2eBeA/2)=eA/2eBeA/21. The inequality has been generalized to three matrices by Lieb (1973) and furthermore to any arbitrary number of Hermitian matrices by Sutter, Berta & Tomamichel (2016). A naive attempt at generalization does not work: the inequality

tr(eA+B+C)|tr(eAeBeC)|

is false. For three matrices, the correct generalization takes the following form:

treA+B+Ctr(eA𝒯eBeC),

where the operator 𝒯f is the derivative of the matrix logarithm given by 𝒯f(g)=0dt(f+t)1g(f+t)1. Note that, if f and g commute, then 𝒯f(g)=gf1, and the inequality for three matrices reduces to the original from Golden and Thompson. Bertram Kostant (1973) used the Kostant convexity theorem to generalize the Golden–Thompson inequality to all compact Lie groups.

References

  • Bhatia, Rajendra (1997), Matrix analysis, Graduate Texts in Mathematics, vol. 169, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0653-8, ISBN 978-0-387-94846-1, MR 1477662
  • Cohen, J.E.; Friedland, S.; Kato, T.; Kelly, F. (1982), "Eigenvalue inequalities for products of matrix exponentials", Linear Algebra and Its Applications, 45: 55–95, doi:10.1016/0024-3795(82)90211-7
  • Golden, Sidney (1965), "Lower bounds for the Helmholtz function", Phys. Rev., Series II, 137 (4B): B1127–B1128, Bibcode:1965PhRv..137.1127G, doi:10.1103/PhysRev.137.B1127, MR 0189691
  • Kostant, Bertram (1973), "On convexity, the Weyl group and the Iwasawa decomposition", Annales Scientifiques de l'École Normale Supérieure, Série 4, 6 (4): 413–455, doi:10.24033/asens.1254, ISSN 0012-9593, MR 0364552
  • Lieb, Elliott H (1973), "Convex trace functions and the Wigner-Yanase-Dyson conjecture", Advances in Mathematics, 11 (3): 267–288, doi:10.1016/0001-8708(73)90011-X
  • Petz, D. (1994), A survey of trace inequalities, in Functional Analysis and Operator Theory (PDF), vol. 30, Warszawa: Banach Center Publications, pp. 287–298, archived from the original (PDF) on 2012-02-12, retrieved 2009-01-15
  • Sutter, David; Berta, Mario; Tomamichel, Marco (2016), "Multivariate Trace Inequalities", Communications in Mathematical Physics, 352 (1): 37–58, arXiv:1604.03023, Bibcode:2017CMaPh.352...37S, doi:10.1007/s00220-016-2778-5, S2CID 12081784
  • Thompson, Colin J. (1965), "Inequality with applications in statistical mechanics", Journal of Mathematical Physics, 6 (11): 1812–1813, Bibcode:1965JMP.....6.1812T, doi:10.1063/1.1704727, ISSN 0022-2488, MR 0189688

External links