Grüneisen parameter

From The Right Wiki
Jump to navigationJump to search

In condensed matter, Grüneisen parameter γ is a dimensionless thermodynamic parameter named after German physicist Eduard Grüneisen, whose original definition was formulated in terms of the phonon nonlinearities.[1] Because of the equivalences of many properties and derivatives within thermodynamics (e.g. see Maxwell relations), there are many formulations of the Grüneisen parameter which are equally valid, leading to numerous interpretations of its meaning. Some formulations for the Grüneisen parameter include: γ=V(dPdE)V=αKTCVρ=αKSCPρ=αvs2CP=(lnTlnV)S where V is volume, CP and CV are the principal (i.e. per-mass) heat capacities at constant pressure and volume, E is energy, S is entropy, α is the volume thermal expansion coefficient, KS and KT are the adiabatic and isothermal bulk moduli, vs is the speed of sound in the medium, and ρ is density. The Grüneisen parameter is dimensionless.

Grüneisen constant for perfect crystals with pair interactions

The expression for the Grüneisen constant of a perfect crystal with pair interactions in d-dimensional space has the form:[2] Γ0=12dΠ(a)a2+(d1)[Π(a)aΠ(a)]Π(a)a+(d1)Π(a), where Π is the interatomic potential, a is the equilibrium distance, d is the space dimensionality. Relations between the Grüneisen constant and parameters of Lennard-Jones, Morse, and Mie[3] potentials are presented in the table below.

Lattice Dimensionality (d) Lennard-Jones potential Mie Potential Morse potential
Chain 1 1012 m+n+32 3αa2
Triangular lattice 2 5 m+n+24 3αa14
FCC, BCC 3 196 n+m+16 3αa26
"Hyperlattice" 12 12 12
General formula 11d12 m+n+42d12 3αa+12d12

The expression for the Grüneisen constant of a 1D chain with Mie potential exactly coincides with the results of MacDonald and Roy.[4] Using the relation between the Grüneisen parameter and interatomic potential one can derive the simple necessary and sufficient condition for Negative Thermal Expansion in perfect crystals with pair interactions Π(a)a>(d1)Π(a). A proper description of the Grüneisen parameter represents a stringent test for any type of interatomic potential.

Microscopic definition via the phonon frequencies

The physical meaning of the parameter can also be extended by combining thermodynamics with a reasonable microphysics model for the vibrating atoms within a crystal. When the restoring force acting on an atom displaced from its equilibrium position is linear in the atom's displacement, the frequencies ωi of individual phonons do not depend on the volume of the crystal or on the presence of other phonons, and the thermal expansion (and thus γ) is zero. When the restoring force is non-linear in the displacement, the phonon frequencies ωi change with the volume V. The Grüneisen parameter of an individual vibrational mode i can then be defined as (the negative of) the logarithmic derivative of the corresponding frequency ωi: γi=VωiωiV.

Relationship between microscopic and thermodynamic models

Using the quasi-harmonic approximation for atomic vibrations, the macroscopic Grüneisen parameter (γ) can be related to the description of how the vibrational frequencies (phonons) within a crystal are altered with changing volume (i.e. γi's). For example, one can show that γ=αKTCVρ if one defines γ as the weighted average γ=iγicV,iicV,i, where cV,i's are the partial vibrational mode contributions to the heat capacity, such that CV=1ρVicV,i.

Proof

To prove this relation, it is easiest to introduce the heat capacity per particle C~V=icV,i; so one can write iγicV,iC~V=αKTCVρ=αVKTC~V. This way, it suffices to prove iγicV,i=αVKT. Left-hand side (def): iγicV,i=i[VωiωiV][kB(ωikBT)2exp(ωikBT)[exp(ωikBT)1]2] Right-hand side (def): αVKT=[1V(VT)P]V[V(PV)T]=V(VT)P(PV)T Furthermore (Maxwell relations): (VT)P=T(GP)T=P(GT)P=(SP)T Thus αVKT=V(SP)T(PV)T=V(SV)T This derivative is straightforward to determine in the quasi-harmonic approximation, as only the ωi are V-dependent. SV=V{ikBln[1exp(ωi(V)kBT)]+i1Tωi(V)exp(ωi(V)kBT)1} VSV=iVωiωiVkB(ωikBT)2exp(ωikBT)[exp(ωikBT)1]2=iγicV,i This yields γ=iγicV,iicV,i=αVKTC~V.

See also

External links

References

  1. Grüneisen, E. (1912), "Theorie des festen Zustandes einatomiger Elemente", Annalen der Physik, 344 (12): 257–306, Bibcode:1912AnP...344..257G, doi:10.1002/andp.19123441202
  2. Krivtsov, A.M.; Kuzkin, V.A. (2011), "Derivation of Equations of State for Ideal Crystals of Simple Structure", Mechanics of Solids, 46 (3): 387–399, Bibcode:2011MeSol..46..387K, doi:10.3103/S002565441103006X, S2CID 51837957
  3. "Mie potential page on SklogWiki - a wiki for statistical mechanics and thermodynamics". www.sklogwiki.org. Retrieved 2019-11-19.
  4. MacDonald, D. K. C.; Roy, S.K. (1955), "Vibrational Anharmonicity and Lattice Thermal Properties. II", Phys. Rev., 97 (3): 673–676, Bibcode:1955PhRv...97..673M, doi:10.1103/PhysRev.97.673