Hexacode

From The Right Wiki
Jump to navigationJump to search

In coding theory, the hexacode is a length 6 linear code of dimension 3 over the Galois field GF(4)={0,1,ω,ω2} of 4 elements defined by

H={(a,b,c,f(1),f(ω),f(ω2)):f(x):=ax2+bx+c;a,b,cGF(4)}.

It is a 3-dimensional subspace of the vector space of dimension 6 over GF(4). Then H contains 45 codewords of weight 4, 18 codewords of weight 6 and the zero word. The full automorphism group of the hexacode is 3.S6. The hexacode can be used to describe the Miracle Octad Generator of R. T. Curtis.

References

  • Conway, John H.; Sloane, Neil J. A. (1998). Sphere Packings, Lattices and Groups ((3rd ed.) ed.). New York: Springer-Verlag. ISBN 0-387-98585-9.