IFITM3
An Error has occurred retrieving Wikidata item for infobox Interferon-induced transmembrane protein 3 (IFITM3) is a protein that in humans is encoded by the IFITM3 gene.[1][2][3] It plays a critical role in the immune system's defense against Swine Flu, where heightened levels of IFITM3 keep viral levels low, and the removal of IFITM3 allows the virus to multiply unchecked.[4] This observation has been further advanced by a recent study from Paul Kellam's lab that shows that a single nucleotide polymorphism in the human IFITM3 gene purported to increase influenza susceptibility is overrepresented in people hospitalised with pandemic H1N1.[5] The prevalence of this mutation is thought to be approximately 1/400 in European populations.[5][6]
References
- ↑ Lewin AR, Reid LE, McMahon M, Stark GR, Kerr IM (Aug 1991). "Molecular analysis of a human interferon-inducible gene family". Eur J Biochem. 199 (2): 417–423. doi:10.1111/j.1432-1033.1991.tb16139.x. PMID 1906403.
- ↑ Tanaka SS, Yamaguchi YL, Tsoi B, Lickert H, Tam PP (Dec 2005). "IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion". Dev Cell. 9 (6): 745–756. doi:10.1016/j.devcel.2005.10.010. PMID 16326387.
- ↑ "Entrez Gene: IFITM3 interferon induced transmembrane protein 3 (1-8U)".
- ↑ "Natural swine flu defence found". Archived from the original on December 20, 2009.
- ↑ 5.0 5.1 Everitt A.R.; et al. (March 2012). "IFITM3 restricts the morbidity and mortality associated with influenza". Nature. 484 (7395): 519–23. Bibcode:2012Natur.484..519.. doi:10.1038/nature10921. PMC 3648786. PMID 22446628.
- ↑ "Gene flaw linked to serious flu risk". BBC News. 25 March 2012.
Further reading
- Vaarala MH, Porvari K, Kyllönen A, Vihko P (2000). "Differentially expressed genes in two LNCaP prostate cancer cell lines reflecting changes during prostate cancer progression". Lab. Invest. 80 (8): 1259–1268. doi:10.1038/labinvest.3780134. PMID 10950117.
- Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination". Genome Res. 10 (11): 1788–1795. doi:10.1101/gr.143000. PMC 310948. PMID 11076863.
- Simpson JC, Wellenreuther R, Poustka A, et al. (2001). "Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing". EMBO Rep. 1 (3): 287–292. doi:10.1093/embo-reports/kvd058. PMC 1083732. PMID 11256614.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–16903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–2127. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Wiemann S, Arlt D, Huber W, et al. (2004). "From ORFeome to biology: a functional genomics pipeline". Genome Res. 14 (10B): 2136–2144. doi:10.1101/gr.2576704. PMC 528930. PMID 15489336.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
- Mehrle A, Rosenfelder H, Schupp I, et al. (2006). "The LIFEdb database in 2006". Nucleic Acids Res. 34 (Database issue): D415–D418. doi:10.1093/nar/gkj139. PMC 1347501. PMID 16381901.