Ising critical exponents

From The Right Wiki
Jump to navigationJump to search

This article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and 2 symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

d=2 d=3 d=4 general expression
α 0 0.11008708(35) 0 2d/(dΔϵ)
β 1/8 0.32641871(75) 1/2 Δσ/(dΔϵ)
γ 7/4 1.23707551(26) 1 (d2Δσ)/(dΔϵ)
δ 15 4.78984254(27) 3 (dΔσ)/Δσ
η 1/4 0.036297612(48) 0 2Δσd+2
ν 1 0.62997097(12) 1/2 1/(dΔϵ)
ω 2 0.82966(9) 0 Δϵd

From the quantum field theory point of view, the critical exponents can be expressed in terms of scaling dimensions of the local operators σ,ϵ,ϵ of the conformal field theory describing the phase transition[1] (In the Ginzburg–Landau description, these are the operators normally called ϕ,ϕ2,ϕ4.) These expressions are given in the last column of the above table, and were used to calculate the values of the critical exponents using the operator dimensions values from the following table:

d=2 d=3 d=4
Δσ 1/8 0.518148806(24) [2] 1
Δϵ 1 1.41262528(29) [2] 2
Δϵ 4 3.82966(9) [3][4] 4

In d=2, the two-dimensional critical Ising model's critical exponents can be computed exactly using the minimal model M3,4. In d=4, it is the free massless scalar theory (also referred to as mean field theory). These two theories are exactly solved, and the exact solutions give values reported in the table. The d=3 theory is not yet exactly solved. The most accurate results come from the conformal bootstrap[2][3][4][5][6][7][8]. These are the values reported in the tables. Renormalization group methods[9][10][11][12], Monte-Carlo simulations[13], and the fuzzy sphere regulator[14] give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate.

See also

References

  1. John Cardy (1996). Scaling and Renormalization in Statistical Physics. Cambridge University Press. ISBN 978-0-521-49959-0.
  2. 2.0 2.1 2.2 Chang, Cyuan-Han; Dommes, Vasiliy; Erramilli, Rajeev; Homrich, Alexandre; Kravchuk, Petr; Liu, Aike; Mitchell, Matthew; Poland, David; Simmons-Duffin, David (2024-11-22). "Bootstrapping the 3d Ising stress tensor". Retrieved 2024-11-28.
  3. 3.0 3.1 Komargodski, Zohar; Simmons-Duffin, David (14 March 2016). "The Random-Bond Ising Model in 2.01 and 3 Dimensions". Journal of Physics A: Mathematical and Theoretical. 50 (15): 154001. arXiv:1603.04444. Bibcode:2017JPhA...50o4001K. doi:10.1088/1751-8121/aa6087. S2CID 34925106.
  4. 4.0 4.1 Reehorst, Marten (2022-09-21). "Rigorous bounds on irrelevant operators in the 3d Ising model CFT". Journal of High Energy Physics. 2022 (9): 177. arXiv:2111.12093. doi:10.1007/JHEP09(2022)177. ISSN 1029-8479. S2CID 244527272.
  5. Kos, Filip; Poland, David; Simmons-Duffin, David; Vichi, Alessandro (14 March 2016). "Precision Islands in the Ising and O(N) Models". Journal of High Energy Physics. 2016 (8): 36. arXiv:1603.04436. Bibcode:2016JHEP...08..036K. doi:10.1007/JHEP08(2016)036. S2CID 119230765.
  6. El-Showk, Sheer; Paulos, Miguel F.; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro (2014). "Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents". Journal of Statistical Physics. 157 (4–5): 869–914. arXiv:1403.4545. Bibcode:2014JSP...157..869E. doi:10.1007/s10955-014-1042-7. S2CID 39692193.
  7. Simmons-Duffin, David (2015). "A semidefinite program solver for the conformal bootstrap". Journal of High Energy Physics. 2015 (6): 174. arXiv:1502.02033. Bibcode:2015JHEP...06..174S. doi:10.1007/JHEP06(2015)174. ISSN 1029-8479. S2CID 35625559.
  8. Kadanoff, Leo P. (April 30, 2014). "Deep Understanding Achieved on the 3d Ising Model". Journal Club for Condensed Matter Physics. Archived from the original on July 22, 2015. Retrieved July 18, 2015.
  9. Pelissetto, Andrea; Vicari, Ettore (2002). "Critical phenomena and renormalization-group theory". Physics Reports. 368 (6): 549–727. arXiv:cond-mat/0012164. Bibcode:2002PhR...368..549P. doi:10.1016/S0370-1573(02)00219-3. S2CID 119081563.
  10. Kleinert, H., "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions". Physical Review D 60, 085001 (1999)
  11. Balog, Ivan; Chate, Hugues; Delamotte, Bertrand; Marohnic, Maroje; Wschebor, Nicolas (2019). "Convergence of Non-Perturbative Approximations to the Renormalization Group". Phys. Rev. Lett. 123: 240604. arXiv:1907.01829.
  12. De Polsi, Gonzalo; Balog, Ivan; Tissier, Matthieu; Wschebor, Nicolas (2020). "Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group". Phys. Rev. E. 101: 042113. arXiv:1907.01829.
  13. Hasenbusch, Martin (2010). "Finite size scaling study of lattice models in the three-dimensional Ising universality class". Physical Review B. 82 (17). doi:10.1103/PhysRevB.82.174433.
  14. Zhu, Wei (2023). "Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization". Physical Review X. 13 (2). doi:10.1103/PhysRevX.13.021009.

Books

External links