Jacobi elliptic functions

From The Right Wiki
(Redirected from Jacobian elliptic function)
Jump to navigationJump to search

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation sn for sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi (1829). Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular,[1] but his work was published much later.

Overview

File:JacobiFunctionAbstract.png
The fundamental rectangle in the complex plane of u

There are twelve Jacobi elliptic functions denoted by pq(u,m), where p and q are any of the letters c, s, n, and d. (Functions of the form pp(u,m) are trivially set to unity for notational completeness.) u is the argument, and m is the parameter, both of which may be complex. In fact, the Jacobi elliptic functions are meromorphic in both u and m.[2] The distribution of the zeros and poles in the u-plane is well-known. However, questions of the distribution of the zeros and poles in the m-plane remain to be investigated.[2] In the complex plane of the argument u, the twelve functions form a repeating lattice of simple poles and zeroes.[3] Depending on the function, one repeating parallelogram, or unit cell, will have sides of length 2K or 4K on the real axis, and 2K or 4K on the imaginary axis, where K=K(m) and K=K(1m) are known as the quarter periods with K() being the elliptic integral of the first kind. The nature of the unit cell can be determined by inspecting the "auxiliary rectangle" (generally a parallelogram), which is a rectangle formed by the origin (0,0) at one corner, and (K,K) as the diagonally opposite corner. As in the diagram, the four corners of the auxiliary rectangle are named s, c, d, and n, going counter-clockwise from the origin. The function pq(u,m) will have a zero at the p corner and a pole at the q corner. The twelve functions correspond to the twelve ways of arranging these poles and zeroes in the corners of the rectangle. When the argument u and parameter m are real, with 0<m<1, K and K will be real and the auxiliary parallelogram will in fact be a rectangle, and the Jacobi elliptic functions will all be real valued on the real line. Since the Jacobian elliptic functions are doubly periodic in u, they factor through a torus – in effect, their domain can be taken to be a torus, just as cosine and sine are in effect defined on a circle. Instead of having only one circle, we now have the product of two circles, one real and the other imaginary. The complex plane can be replaced by a complex torus. The circumference of the first circle is 4K and the second 4K, where K and K are the quarter periods. Each function has two zeroes and two poles at opposite positions on the torus. Among the points 0, K, K+iK, iK there is one zero and one pole. The Jacobian elliptic functions are then doubly periodic, meromorphic functions satisfying the following properties:

  • There is a simple zero at the corner p, and a simple pole at the corner q.
  • The complex number pq is equal to half the period of the function pqu; that is, the function pqu is periodic in the direction pq, with the period being 2(pq). The function pqu is also periodic in the other two directions pp and pq, with periods such that pp and pq are quarter periods.
Jacobi elliptic function sn
Jacobi elliptic function cn
Jacobi elliptic function dn
Jacobi elliptic function sc
Plots of four Jacobi Elliptic Functions in the complex plane of u, illustrating their double periodic behavior. Images generated using a version of the domain coloring method.[4] All have values of k=m equal to 0.8.

Notation

The elliptic functions can be given in a variety of notations, which can make the subject unnecessarily confusing. Elliptic functions are functions of two variables. The first variable might be given in terms of the amplitude φ, or more commonly, in terms of u given below. The second variable might be given in terms of the parameter m, or as the elliptic modulus k, where k2=m, or in terms of the modular angle α, where m=sin2α. The complements of k and m are defined as m=1m and k=m. These four terms are used below without comment to simplify various expressions. The twelve Jacobi elliptic functions are generally written as pq(u,m) where p and q are any of the letters c, s, n, and d. Functions of the form pp(u,m) are trivially set to unity for notational completeness. The “major” functions are generally taken to be cn(u,m), sn(u,m) and dn(u,m) from which all other functions can be derived and expressions are often written solely in terms of these three functions, however, various symmetries and generalizations are often most conveniently expressed using the full set. (This notation is due to Gudermann and Glaisher and is not Jacobi's original notation.) Throughout this article, pq(u,t2)=pq(u;t). The functions are notationally related to each other by the multiplication rule: (arguments suppressed)

pqp'q'=pq'p'q

from which other commonly used relationships can be derived:

prqr=pq
prrq=pq
1qp=pq

The multiplication rule follows immediately from the identification of the elliptic functions with the Neville theta functions[5]

pq(u,m)=θp(u,m)θq(u,m)

Also note that:

K(m)=K(k2)=01dt(1t2)(1mt2)=01dt(1t2)(1k2t2).

Definition in terms of inverses of elliptic integrals

File:Modell der elliptischen Funktion φ=am (u, k) durch eine Fläche -Schilling V, 1 - 317-.jpg
Model of the Jacobi amplitude (measured along vertical axis) as a function of independent variables u and the modulus k

There is a definition, relating the elliptic functions to the inverse of the incomplete elliptic integral of the first kind F. These functions take the parameters u and m as inputs. The φ that satisfies

u=F(φ,m)=0φdθ1msin2θ

is called the Jacobi amplitude:

am(u,m)=φ.

In this framework, the elliptic sine sn u (Latin: sinus amplitudinis) is given by

sn(u,m)=sinam(u,m)

and the elliptic cosine cn u (Latin: cosinus amplitudinis) is given by

cn(u,m)=cosam(u,m)

and the delta amplitude dn u (Latin: delta amplitudinis)[note 1]

dn(u,m)=dduam(u,m).

In the above, the value m is a free parameter, usually taken to be real such that 0m1 (but can be complex in general), and so the elliptic functions can be thought of as being given by two variables, u and the parameter m. The remaining nine elliptic functions are easily built from the above three (sn, cn, dn), and are given in a section below. Note that when φ=π/2, that u then equals the quarter period K. In the most general setting, am(u,m) is a multivalued function (in u) with infinitely many logarithmic branch points (the branches differ by integer multiples of 2π), namely the points 2sK(m)+(4t+1)K(1m)i and 2sK(m)+(4t+3)K(1m)i where s,t.[6] This multivalued function can be made single-valued by cutting the complex plane along the line segments joining these branch points (the cutting can be done in non-equivalent ways, giving non-equivalent single-valued functions), thus making am(u,m) analytic everywhere except on the branch cuts. In contrast, sinam(u,m) and other elliptic functions have no branch points, give consistent values for every branch of am, and are meromorphic in the whole complex plane. Since every elliptic function is meromorphic in the whole complex plane (by definition), am(u,m) (when considered as a single-valued function) is not an elliptic function. However, a particular cutting for am(u,m) can be made in the u-plane by line segments from 2sK(m)+(4t+1)K(1m)i to 2sK(m)+(4t+3)K(1m)i with s,t; then it only remains to define am(u,m) at the branch cuts by continuity from some direction. Then am(u,m) becomes single-valued and singly-periodic in u with the minimal period 4iK(1m) and it has singularities at the logarithmic branch points mentioned above. If m and m1, am(u,m) is continuous in u on the real line. When m>1, the branch cuts of am(u,m) in the u-plane cross the real line at 2(2s+1)K(1/m)/m for s; therefore for m>1, am(u,m) is not continuous in u on the real line and jumps by 2π on the discontinuities. But defining am(u,m) this way gives rise to very complicated branch cuts in the m-plane (not the u-plane); they have not been fully described as of yet. Let

E(φ,m)=0φ1msin2θdθ

be the incomplete elliptic integral of the second kind with parameter m. Then the Jacobi epsilon function can be defined as

(u,m)=E(am(u,m),m)

for u and 0<m<1 and by analytic continuation in each of the variables otherwise: the Jacobi epsilon function is meromorphic in the whole complex plane (in both u and m). Alternatively, throughout both the u-plane and m-plane,[7]

(u,m)=0udn2(t,m)dt;

is well-defined in this way because all residues of tdn(t,m)2 are zero, so the integral is path-independent. So the Jacobi epsilon relates the incomplete elliptic integral of the first kind to the incomplete elliptic integral of the second kind:

E(φ,m)=(F(φ,m),m).

The Jacobi epsilon function is not an elliptic function, but it appears when differentiating the Jacobi elliptic functions with respect to the parameter. The Jacobi zn function is defined by

zn(u,m)=(u,m)E(m)K(m)u.

It is a singly periodic function which is meromorphic in u, but not in m (due to the branch cuts of E and K). Its minimal period in u is 2K(m). It is related to the Jacobi zeta function by Z(φ,m)=zn(F(φ,m),m). Historically, the Jacobi elliptic functions were first defined by using the amplitude. In more modern texts on elliptic functions, the Jacobi elliptic functions are defined by other means, for example by ratios of theta functions (see below), and the amplitude is ignored. In modern terms, the relation to elliptic integrals would be expressed by sn(F(φ,m),m)=sinφ (or cn(F(φ,m),m)=cosφ) instead of am(F(φ,m),m)=φ.

Definition as trigonometry: the Jacobi ellipse

File:Jacobi Elliptic Functions (on Jacobi Ellipse).svg
Plot of the Jacobi ellipse (x2 + y2/b2 = 1, b real) and the twelve Jacobi elliptic functions pq(u,m) for particular values of angle φ and parameter b. The solid curve is the ellipse, with m = 1 − 1/b2 and u = F(φ,m) where F(⋅,⋅) is the elliptic integral of the first kind (with parameter m=k2). The dotted curve is the unit circle. Tangent lines from the circle and ellipse at x = cd crossing the x-axis at dc are shown in light grey.

cosφ,sinφ are defined on the unit circle, with radius r = 1 and angle φ= arc length of the unit circle measured from the positive x-axis. Similarly, Jacobi elliptic functions are defined on the unit ellipse,[citation needed] with a = 1. Let

x2+y2b2=1,b>1,m=11b2,0<m<1,x=rcosφ,y=rsinφ

then:

r(φ,m)=11msin2φ.

For each angle φ the parameter

u=u(φ,m)=0φr(θ,m)dθ

(the incomplete elliptic integral of the first kind) is computed. On the unit circle (a=b=1), u would be an arc length. However, the relation of u to the arc length of an ellipse is more complicated.[8] Let P=(x,y)=(rcosφ,rsinφ) be a point on the ellipse, and let P=(x,y)=(cosφ,sinφ) be the point where the unit circle intersects the line between P and the origin O. Then the familiar relations from the unit circle:

x=cosφ,y=sinφ

read for the ellipse:

x=cn(u,m),y=sn(u,m).

So the projections of the intersection point P of the line OP with the unit circle on the x- and y-axes are simply cn(u,m) and sn(u,m). These projections may be interpreted as 'definition as trigonometry'. In short:

cn(u,m)=xr(φ,m),sn(u,m)=yr(φ,m),dn(u,m)=1r(φ,m).

For the x and y value of the point P with u and parameter m we get, after inserting the relation:

r(φ,m)=1dn(u,m)

into: x=r(φ,m)cos(φ),y=r(φ,m)sin(φ) that:

x=cn(u,m)dn(u,m),y=sn(u,m)dn(u,m).

The latter relations for the x- and y-coordinates of points on the unit ellipse may be considered as generalization of the relations x=cosφ,y=sinφ for the coordinates of points on the unit circle. The following table summarizes the expressions for all Jacobi elliptic functions pq(u,m) in the variables (x,y,r) and (φ,dn) with r=x2+y2

Jacobi elliptic functions pq[u,m] as functions of {x,y,r} and {φ,dn}
q
c s n d
p
c 1 x/y=cot(φ) x/r=cos(φ) x=cos(φ)/dn
s y/x=tan(φ) 1 y/r=sin(φ) y=sin(φ)/dn
n r/x=sec(φ) r/y=csc(φ) 1 r=1/dn
d 1/x=sec(φ)dn 1/y=csc(φ)dn 1/r=dn 1

Definition in terms of the Jacobi theta functions

Using elliptic integrals

Equivalently, Jacobi's elliptic functions can be defined in terms of the theta functions.[9] With z,τ such that Imτ>0, let

θ1(z|τ)=n=(1)n12e(2n+1)iz+πiτ(n+12)2,
θ2(z|τ)=n=e(2n+1)iz+πiτ(n+12)2,
θ3(z|τ)=n=e2niz+πiτn2,
θ4(z|τ)=n=(1)ne2niz+πiτn2

and θ2(τ)=θ2(0|τ), θ3(τ)=θ3(0|τ), θ4(τ)=θ4(0|τ). Then with K=K(m), K=K(1m), ζ=πu/(2K) and τ=iK/K,

sn(u,m)=θ3(τ)θ1(ζ|τ)θ2(τ)θ4(ζ|τ),cn(u,m)=θ4(τ)θ2(ζ|τ)θ2(τ)θ4(ζ|τ),dn(u,m)=θ4(τ)θ3(ζ|τ)θ3(τ)θ4(ζ|τ).

The Jacobi zn function can be expressed by theta functions as well:

zn(u,m)=π2Kθ4(ζ|τ)θ4(ζ|τ)=π2Kθ3(ζ|τ)θ3(ζ|τ)+msn(u,m)cn(u,m)dn(u,m)=π2Kθ2(ζ|τ)θ2(ζ|τ)+dn(u,m)sn(u,m)cn(u,m)=π2Kθ1(ζ|τ)θ1(ζ|τ)cn(u,m)dn(u,m)sn(u,m)

where denotes the partial derivative with respect to the first variable.

Using modular inversion

In fact, the definition of the Jacobi elliptic functions in Whittaker & Watson is stated a little bit differently than the one given above (but it's equivalent to it) and relies on modular inversion: The function λ, defined by

File:The region F1 for modular inversion.jpg
The region F1 in the complex plane. It is bounded by two semicircles from below, by a ray from the left and by a ray from the right.
λ(τ)=θ2(τ)4θ3(τ)4,

assumes every value in {0,1} once and only once[10] in

F1(F1{τ:Reτ<0})

where is the upper half-plane in the complex plane, F1 is the boundary of F1 and

F1={τ:|Reτ|1,|Re(1/τ)|1}.

In this way, each m=defλ(τ){0,1} can be associated with one and only one τ. Then Whittaker & Watson define the Jacobi elliptic functions by

sn(u,m)=θ3(τ)θ1(ζ|τ)θ2(τ)θ4(ζ|τ),cn(u,m)=θ4(τ)θ2(ζ|τ)θ2(τ)θ4(ζ|τ),dn(u,m)=θ4(τ)θ3(ζ|τ)θ3(τ)θ4(ζ|τ)

where ζ=u/θ3(τ)2. In the book, they place an additional restriction on m (that m(,0)(1,)), but it is in fact not a necessary restriction (see the Cox reference). Also, if m=0 or m=1, the Jacobi elliptic functions degenerate to non-elliptic functions which is described below.

Definition in terms of Neville theta functions

The Jacobi elliptic functions can be defined very simply using the Neville theta functions:[11]

pq(u,m)=θp(u,m)θq(u,m)

Simplifications of complicated products of the Jacobi elliptic functions are often made easier using these identities.

Jacobi transformations

The Jacobi imaginary transformations

File:JacobiElliptic.HT.svg
Plot of the degenerate Jacobi curve (x2 + y2/b2 = 1, b = ∞) and the twelve Jacobi Elliptic functions pq(u,1) for a particular value of angle φ. The solid curve is the degenerate ellipse (x2 = 1) with m = 1 and u = F(φ,1) where F(⋅,⋅) is the elliptic integral of the first kind. The dotted curve is the unit circle. Since these are the Jacobi functions for m = 0 (circular trigonometric functions) but with imaginary arguments, they correspond to the six hyperbolic trigonometric functions.

The Jacobi imaginary transformations relate various functions of the imaginary variable i u or, equivalently, relations between various values of the m parameter. In terms of the major functions:[12]: 506 

cn(u,m)=nc(iu,1m)
sn(u,m)=isc(iu,1m)
dn(u,m)=dc(iu,1m)

Using the multiplication rule, all other functions may be expressed in terms of the above three. The transformations may be generally written as pq(u,m)=γpqpq(iu,1m). The following table gives the γpqpq(iu,1m) for the specified pq(u,m).[11] (The arguments (iu,1m) are suppressed)

Jacobi Imaginary transformations γpqpq(iu,1m)
q
c s n d
p
c 1 i ns nc nd
s i sn 1 i sc i sd
n cn i cs 1 cd
d dn i ds dc 1

Since the hyperbolic trigonometric functions are proportional to the circular trigonometric functions with imaginary arguments, it follows that the Jacobi functions will yield the hyperbolic functions for m=1.[5]: 249  In the figure, the Jacobi curve has degenerated to two vertical lines at x = 1 and x = −1.

The Jacobi real transformations

The Jacobi real transformations[5]: 308  yield expressions for the elliptic functions in terms with alternate values of m. The transformations may be generally written as pq(u,m)=γpqpq(ku,1/m). The following table gives the γpqpq(ku,1/m) for the specified pq(u,m).[11] (The arguments (ku,1/m) are suppressed)

Jacobi real transformations γpqpq(ku,1/m)
q
c s n d
p
c 1 kds dn dc
s 1ksd 1 1ksn 1ksc
n nd kns 1 nc
d cd kcs cn 1

Other Jacobi transformations

Jacobi's real and imaginary transformations can be combined in various ways to yield three more simple transformations .[5]: 214  The real and imaginary transformations are two transformations in a group (D3 or anharmonic group) of six transformations. If

μR(m)=1/m

is the transformation for the m parameter in the real transformation, and

μI(m)=1m=m

is the transformation of m in the imaginary transformation, then the other transformations can be built up by successive application of these two basic transformations, yielding only three more possibilities:

μIR(m)=μI(μR(m))=m/mμRI(m)=μR(μI(m))=1/mμRIR(m)=μR(μI(μR(m)))=m/m

These five transformations, along with the identity transformation (μU(m) = m) yield the six-element group. With regard to the Jacobi elliptic functions, the general transformation can be expressed using just three functions:

cs(u,m)=γics'(γiu,μi(m))
ns(u,m)=γins'(γiu,μi(m))
ds(u,m)=γids'(γiu,μi(m))

where i = U, I, IR, R, RI, or RIR, identifying the transformation, γi is a multiplication factor common to these three functions, and the prime indicates the transformed function. The other nine transformed functions can be built up from the above three. The reason the cs, ns, ds functions were chosen to represent the transformation is that the other functions will be ratios of these three (except for their inverses) and the multiplication factors will cancel. The following table lists the multiplication factors for the three ps functions, the transformed m's, and the transformed function names for each of the six transformations.[5]: 214  (As usual, k2 = m, 1 − k2 = k12 = m′ and the arguments (γiu,μi(m)) are suppressed)

Parameters for the six transformations
Transformation i γi μi(m) cs' ns' ds'
U 1 m cs ns ds
I i m' ns cs ds
IR i k −m'/m ds cs ns
R k 1/m ds ns cs
RI i k1 1/m' ns ds cs
RIR k1 −m/m' cs ds ns

Thus, for example, we may build the following table for the RIR transformation.[11] The transformation is generally written pq(u,m)=γpqpq'(ku,m/m) (The arguments (ku,m/m) are suppressed)

The RIR transformation γpqpq'(ku,m/m)
q
c s n d
p
c 1 k' cs cd cn
s 1k sc 1 1k sd 1k sn
n dc k ds 1 dn
d nc k ns nd 1

The value of the Jacobi transformations is that any set of Jacobi elliptic functions with any real-valued parameter m can be converted into another set for which 0<m1/2 and, for real values of u, the function values will be real.[5]: p. 215 

Amplitude transformations

In the following, the second variable is suppressed and is equal to m:

sin(am(u+v)+am(uv))=2snucnudnv1msn2usn2v,
cos(am(u+v)am(uv))=cn2vsn2vdn2u1msn2usn2v

where both identities are valid for all u,v,m such that both sides are well-defined. With

m1=(1m1+m)2,

we have

cos(am(u,m)+am(Ku,m))=sn((1m)u,1/m1),
sin(am(mu,m/m)+am((1m)u,1/m1))=sn(u,m),
sin(am((1+m)u,m1)+am((1m)u,1/m1))=sin(2am(u,m))

where all the identities are valid for all u,m such that both sides are well-defined.

The Jacobi hyperbola

File:Jacobi Elliptic Functions (on Jacobi Hyperbola).svg
Plot of the Jacobi hyperbola (x2 + y2/b2 = 1, b imaginary) and the twelve Jacobi Elliptic functions pq(u,m) for particular values of angle φ and parameter b. The solid curve is the hyperbola, with m = 1 − 1/b2 and u = F(φ,m) where F(⋅,⋅) is the elliptic integral of the first kind. The dotted curve is the unit circle. For the ds-dc triangle, σ =  sin(φ)cos(φ).

Introducing complex numbers, our ellipse has an associated hyperbola:

x2y2b2=1

from applying Jacobi's imaginary transformation[11] to the elliptic functions in the above equation for x and y.

x=1dn(u,1m),y=sn(u,1m)dn(u,1m)

It follows that we can put x=dn(u,1m),y=sn(u,1m). So our ellipse has a dual ellipse with m replaced by 1-m. This leads to the complex torus mentioned in the Introduction.[13] Generally, m may be a complex number, but when m is real and m<0, the curve is an ellipse with major axis in the x direction. At m=0 the curve is a circle, and for 0<m<1, the curve is an ellipse with major axis in the y direction. At m = 1, the curve degenerates into two vertical lines at x = ±1. For m > 1, the curve is a hyperbola. When m is complex but not real, x or y or both are complex and the curve cannot be described on a real x-y diagram.

Minor functions

Reversing the order of the two letters of the function name results in the reciprocals of the three functions above:

ns(u)=1sn(u),nc(u)=1cn(u),nd(u)=1dn(u).

Similarly, the ratios of the three primary functions correspond to the first letter of the numerator followed by the first letter of the denominator:

sc(u)=sn(u)cn(u),sd(u)=sn(u)dn(u),dc(u)=dn(u)cn(u),ds(u)=dn(u)sn(u),cs(u)=cn(u)sn(u),cd(u)=cn(u)dn(u).

More compactly, we have

pq(u)=pn(u)qn(u)

where p and q are any of the letters s, c, d.

Periodicity, poles, and residues

File:JacobiEllipticFunctions.svg
Plots of the phase for the twelve Jacobi Elliptic functions pq(u,m) as a function complex argument u, with poles and zeroes indicated. The plots are over one full cycle in the real and imaginary directions with the colored portion indicating phase according to the color wheel at the lower right (which replaces the trivial dd function). Regions with absolute value below 1/3 are colored black, roughly indicating the location of a zero, while regions with absolute value above 3 are colored white, roughly indicating the position of a pole. All plots use m = 2/3 with K = K(m), K′ = K(1 − m), K(⋅) being the complete elliptic integral of the first kind. Arrows at the poles point in direction of zero phase. Right and left arrows imply positive and negative real residues respectively. Up and down arrows imply positive and negative imaginary residues respectively.

In the complex plane of the argument u, the Jacobi elliptic functions form a repeating pattern of poles (and zeroes). The residues of the poles all have the same absolute value, differing only in sign. Each function pq(u,m) has an "inverse function" (in the multiplicative sense) qp(u,m) in which the positions of the poles and zeroes are exchanged. The periods of repetition are generally different in the real and imaginary directions, hence the use of the term "doubly periodic" to describe them. For the Jacobi amplitude and the Jacobi epsilon function:

am(u+2K,m)=am(u,m)+π,
am(u+4iK,m)=am(u,m),
(u+2K,m)=(u,m)+2E,
(u+2iK,m)=(u,m)+2iEKKπiK

where E(m) is the complete elliptic integral of the second kind with parameter m. The double periodicity of the Jacobi elliptic functions may be expressed as:

pq(u+2αK(m)+2iβK(1m),m)=(1)γpq(u,m)

where α and β are any pair of integers. K(⋅) is the complete elliptic integral of the first kind, also known as the quarter period. The power of negative unity (γ) is given in the following table:

γ
q
c s n d
p
c 0 β α + β α
s β 0 α α + β
n α + β α 0 β
d α α + β β 0

When the factor (−1)γ is equal to −1, the equation expresses quasi-periodicity. When it is equal to unity, it expresses full periodicity. It can be seen, for example, that for the entries containing only α when α is even, full periodicity is expressed by the above equation, and the function has full periods of 4K(m) and 2iK(1 − m). Likewise, functions with entries containing only β have full periods of 2K(m) and 4iK(1 − m), while those with α + β have full periods of 4K(m) and 4iK(1 − m). In the diagram on the right, which plots one repeating unit for each function, indicating phase along with the location of poles and zeroes, a number of regularities can be noted: The inverse of each function is opposite the diagonal, and has the same size unit cell, with poles and zeroes exchanged. The pole and zero arrangement in the auxiliary rectangle formed by (0,0), (K,0), (0,K′) and (K,K′) are in accordance with the description of the pole and zero placement described in the introduction above. Also, the size of the white ovals indicating poles are a rough measure of the absolute value of the residue for that pole. The residues of the poles closest to the origin in the figure (i.e. in the auxiliary rectangle) are listed in the following table:

Residues of Jacobi Elliptic Functions
q
c s n d
p
c 1 ik 1k
s 1k 1k ikk
n 1k 1 ik
d -1 1 i

When applicable, poles displaced above by 2K or displaced to the right by 2K′ have the same value but with signs reversed, while those diagonally opposite have the same value. Note that poles and zeroes on the left and lower edges are considered part of the unit cell, while those on the upper and right edges are not. The information about poles can in fact be used to characterize the Jacobi elliptic functions:[14] The function usn(u,m) is the unique elliptic function having simple poles at 2rK+(2s+1)iK (with r,s) with residues (1)r/m taking the value 0 at 0. The function ucn(u,m) is the unique elliptic function having simple poles at 2rK+(2s+1)iK (with r,s) with residues (1)r+s1i/m taking the value 1 at 0. The function udn(u,m) is the unique elliptic function having simple poles at 2rK+(2s+1)iK (with r,s) with residues (1)s1i taking the value 1 at 0.

Special values

Setting m=1 gives the lemniscate elliptic functions sl and cl:

slu=sn(u,1),clu=cd(u,1)=cn(u,1)dn(u,1).

When m=0 or m=1, the Jacobi elliptic functions are reduced to non-elliptic functions:

Function m = 0 m = 1
sn(u,m) sinu tanhu
cn(u,m) cosu sechu
dn(u,m) 1 sechu
ns(u,m) cscu cothu
nc(u,m) secu coshu
nd(u,m) 1 coshu
sd(u,m) sinu sinhu
cd(u,m) cosu 1
cs(u,m) cotu cschu
ds(u,m) cscu cschu
dc(u,m) secu 1
sc(u,m) tanu sinhu

For the Jacobi amplitude, am(u,0)=u and am(u,1)=gdu where gd is the Gudermannian function. In general if neither of p,q is d then pq(u,1)=pq(gd(u),0).

Identities

Half angle formula

sn(u2,m)=±1cn(u,m)1+dn(u,m) cn(u2,m)=±cn(u,m)+dn(u,m)1+dn(u,m) cn(u2,m)=±m+dn(u,m)+mcn(u,m)1+dn(u,m)

K formulas

Half K formula sn[12K(k);k]=21+k+1k cn[12K(k);k]=21k241+k+1k dn[12K(k);k]=1k24 Third K formula

sn[13K(x3x6+1+1);x3x6+1+1]=2x4x2+1x2+2+x2+112x4x2+1x2+2+x2+1+1

To get x3, we take the tangent of twice the arctangent of the modulus. Also this equation leads to the sn-value of the third of K:

k2s42k2s3+2s1=0
s=sn[13K(k);k]

These equations lead to the other values of the Jacobi-Functions:

cn[23K(k);k]=1sn[13K(k);k]
dn[23K(k);k]=1/sn[13K(k);k]1

Fifth K formula Following equation has following solution:

4k2x6+8k2x5+2(1k2)2x(1k2)2=0
x=1212k2sn[25K(k);k]2sn[45K(k);k]2=sn[45K(k);k]2sn[25K(k);k]22sn[25K(k);k]sn[45K(k);k]

To get the sn-values, we put the solution x into following expressions:

sn[25K(k);k]=(1+k2)1/22(1xx2)(x2+1xx2+1)
sn[45K(k);k]=(1+k2)1/22(1xx2)(x2+1+xx2+1)

Relations between squares of the functions

Relations between squares of the functions can be derived from two basic relationships (Arguments (u,m) suppressed): cn2+sn2=1 cn2+msn2=dn2 where m + m' = 1. Multiplying by any function of the form nq yields more general equations: cq2+sq2=nq2 cq2+msq2=dq2 With q = d, these correspond trigonometrically to the equations for the unit circle (x2+y2=r2) and the unit ellipse (x2+my2=1), with x = cd, y = sd and r = nd. Using the multiplication rule, other relationships may be derived. For example: dn2+m=mcn2=msn2m mnd2+m=mmsd2=mcd2m msc2+m=mnc2=dc2m cs2+m=ds2=ns2m

Addition theorems

The functions satisfy the two square relations (dependence on m suppressed) cn2(u)+sn2(u)=1, dn2(u)+msn2(u)=1. From this we see that (cn, sn, dn) parametrizes an elliptic curve which is the intersection of the two quadrics defined by the above two equations. We now may define a group law for points on this curve by the addition formulas for the Jacobi functions[3] cn(x+y)=cn(x)cn(y)sn(x)sn(y)dn(x)dn(y)1msn2(x)sn2(y),sn(x+y)=sn(x)cn(y)dn(y)+sn(y)cn(x)dn(x)1msn2(x)sn2(y),dn(x+y)=dn(x)dn(y)msn(x)sn(y)cn(x)cn(y)1msn2(x)sn2(y). The Jacobi epsilon and zn functions satisfy a quasi-addition theorem: (x+y,m)=(x,m)+(y,m)msn(x,m)sn(y,m)sn(x+y,m),zn(x+y,m)=zn(x,m)+zn(y,m)msn(x,m)sn(y,m)sn(x+y,m). Double angle formulae can be easily derived from the above equations by setting x = y.[3] Half angle formulae[11][3] are all of the form: pq(12u,m)2=fp/fq where: fc=cn(u,m)+dn(u,m) fs=1cn(u,m) fn=1+dn(u,m) fd=(1+dn(u,m))m(1cn(u,m))

Jacobi elliptic functions as solutions of nonlinear ordinary differential equations

Derivatives with respect to the first variable

The derivatives of the three basic Jacobi elliptic functions (with respect to the first variable, with m fixed) are: ddzsn(z)=cn(z)dn(z), ddzcn(z)=sn(z)dn(z), ddzdn(z)=msn(z)cn(z). These can be used to derive the derivatives of all other functions as shown in the table below (arguments (u,m) suppressed):

Derivatives ddupq(u,m)
q
c s n d
p
c 0 −ds ns −dn sn −m' nd sd
s dc nc 0 cn dn cd nd
n dc sc −cs ds 0 m cd sd
d m' nc sc −cs ns m cn sn 0

Also

ddz(z)=dn(z)2.

With the addition theorems above and for a given m with 0 < m < 1 the major functions are therefore solutions to the following nonlinear ordinary differential equations:

  • am(x) solves the differential equations d2ydx2+msin(y)cos(y)=0 and
(dydx)2=1msin(y)2 (for x not on a branch cut)
  • sn(x) solves the differential equations d2ydx2+(1+m)y2my3=0 and (dydx)2=(1y2)(1my2)
  • cn(x) solves the differential equations d2ydx2+(12m)y+2my3=0 and (dydx)2=(1y2)(1m+my2)
  • dn(x) solves the differential equations d2ydx2(2m)y+2y3=0 and (dydx)2=(y21)(1my2)

The function which exactly solves the pendulum differential equation,

d2θdt2+csinθ=0,

with initial angle θ0 and zero initial angular velocity is

θ=2arcsin(mcd(ct,m))=2am(1+m2(ct+K),4m(1+m)2)2am(1+m2(ctK),4m(1+m)2)π

where m=sin(θ0/2)2, c>0 and t.

Derivatives with respect to the second variable

With the first argument z fixed, the derivatives with respect to the second variable m are as follows:

ddmsn(z)=dn(z)cn(z)((1m)z(z)+mcd(z)sn(z))2m(1m),ddmcn(z)=sn(z)dn(z)((m1)z+(z)msn(z)cd(z))2m(1m),ddmdn(z)=sn(z)cn(z)((m1)z+(z)dn(z)sc(z))2(1m),ddm(z)=cn(z)(sn(z)dn(z)cn(z)(z))2(1m)z2sn(z)2.

Expansion in terms of the nome

Let the nome be q=exp(πK(m)/K(m))=eiπτ, Im(τ)>0, m=k2 and let v=πu/(2K(m)). Then the functions have expansions as Lambert series

am(u,m)=πu2K(m)+2n=1qnn(1+q2n)sin(2nv),
sn(u,m)=2πkK(m)n=0qn+1/21q2n+1sin((2n+1)v),
cn(u,m)=2πkK(m)n=0qn+1/21+q2n+1cos((2n+1)v),
dn(u,m)=π2K(m)+2πK(m)n=1qn1+q2ncos(2nv),
zn(u,m)=2πK(m)n=1qn1q2nsin(2nv)

when |Im(u/K)|<Im(iK/K). Bivariate power series expansions have been published by Schett.[15]

Fast computation

The theta function ratios provide an efficient way of computing the Jacobi elliptic functions. There is an alternative method, based on the arithmetic-geometric mean and Landen's transformations:[6] Initialize

a0=1,b0=1m

where 0<m<1. Define

an=an1+bn12,bn=an1bn1,cn=an1bn12

where n1. Then define

φN=2NaNu

for u and a fixed N. If

φn1=12(φn+arcsin(cnansinφn))

for n1, then

am(u,m)=φ0,zn(u,m)=n=1Ncnsinφn

as N. This is notable for its rapid convergence. It is then trivial to compute all Jacobi elliptic functions from the Jacobi amplitude am on the real line.[note 2] In conjunction with the addition theorems for elliptic functions (which hold for complex numbers in general) and the Jacobi transformations, the method of computation described above can be used to compute all Jacobi elliptic functions in the whole complex plane. Another method of fast computation of the Jacobi elliptic functions via the arithmetic–geometric mean, avoiding the computation of the Jacobi amplitude, is due to Herbert E. Salzer:[16] Let

0m1,0uK(m),a0=1,b0=1m,
an+1=an+bn2,bn+1=anbn,cn+1=anbn2.

Set

yN=aNsin(aNu)yN1=yN+aNcNyNyN2=yN1+aN1cN1yN1=y0=y1+m4y1.

Then

sn(u,m)=1y0cn(u,m)=11y02dn(u,m)=1my02

as N. Yet, another method for a rapidly converging fast computation of the Jacobi elliptic sine function found in the literature is shown below.[17] Let:

a0=ub0=11m1+1ma1=a01+b0b1=11b021+1b02==an=an11+bn1bn=11bn121+1bn12

Then set:

yn+1=sin(an)yn=yn+1(1+bn)1+yn+12bn=y0=y1(1+b0)1+y12b0

Then:

sn(u,m)=y0 as n.

Approximation in terms of hyperbolic functions

The Jacobi elliptic functions can be expanded in terms of the hyperbolic functions. When m is close to unity, such that m'2 and higher powers of m can be neglected, we have:[18][19]

  • sn(u): sn(u,m)tanh(u)+14m(sinh(u)cosh(u)u)sech2(u).
  • cn(u): cn(u,m)sech(u)14m(sinh(u)cosh(u)u)tanh(u)sech(u).
  • dn(u): dn(u,m)sech(u)+14m(sinh(u)cosh(u)+u)tanh(u)sech(u).

For the Jacobi amplitude, am(u,m)gd(u)+14m(sinh(u)cosh(u)u)sech(u).

Continued fractions

Assuming real numbers a,p with 0<a<p and the nome q=eπiτ, Im(τ)>0 with elliptic modulus k(τ)=1k(τ)2=(ϑ10(0;τ)/ϑ00(0;τ))2. If K[τ]=K(k(τ)), where K(x)=π/22F1(1/2,1/2;1;x2) is the complete elliptic integral of the first kind, then holds the following continued fraction expansion[20]

dn((p/2a)τK[pτ2];k(pτ2))k(pτ2)=n=qp/2n2+(p/2a)nn=(1)nqp/2n2+(p/2a)n=1+21qa+qpa1qp+(qa+q2pa)(qa+p+qpa)1q3p+qp(qa+q3pa)(qa+2p+qpa)1q5p+q2p(qa+q4pa)(qa+3p+qpa)1q7p+

Known continued fractions involving sn(t),cn(t) and dn(t) with elliptic modulus k are For z, |k|<1:[21] pg. 374

0sn(t)etzdt=112(1+k2)+z21223k232(1+k2)+z23425k252(1+k2)+z2

For z{0}, |k|<1:[21] pg. 375

0sn2(t)etzdt=2z122(1+k2)+z22324k242(1+k2)+z24526k262(1+k2)+z2

For z{0}, |k|<1:[22] pg. 220

0cn(t)etzdt=1z+12z+22k2z+32z+42k2z+52z+

For z{0}, |k|<1:[21] pg. 374

0dn(t)etzdt=1z+12k2z+22z+32k2z+42z+52k2z+

For z, |k|<1:[21] pg. 375

0sn(t)cn(t)dn(t)etzdt=1212(2k2)+z21223k4232(2k2)+z23425k4252(2k2)+z2

Inverse functions

The inverses of the Jacobi elliptic functions can be defined similarly to the inverse trigonometric functions; if x=sn(ξ,m), ξ=arcsn(x,m). They can be represented as elliptic integrals,[23][24][25] and power series representations have been found.[26][3]

  • arcsn(x,m)=0xdt(1t2)(1mt2)
  • arccn(x,m)=x1dt(1t2)(1m+mt2)
  • arcdn(x,m)=x1dt(1t2)(t2+m1)

Map projection

The Peirce quincuncial projection is a map projection based on Jacobian elliptic functions.

See also

Notes

  1. If u and m is restricted to [0,1], then dn(u,m) can be also written as 1msin2am(u,m).
  2. For the dn function, dn(u,m)=cn(u,m)sn(K(m)u,m) can be used.

Citations

  1. Armitage, J. V.; Eberlein, W. F. (2006). Elliptic Functions (First ed.). Cambridge University Press. ISBN 978-0-521-78078-0. p. 48
  2. 2.0 2.1 Walker, Peter (2003). "The Analyticity of Jacobian Functions with Respect to the Parameter k". Proceedings of the Royal Society. 459 (2038): 2569–2574. Bibcode:2003RSPSA.459.2569W. doi:10.1098/rspa.2003.1157. JSTOR 3560143. S2CID 121368966.
  3. 3.0 3.1 3.2 3.3 3.4 Olver, F. W. J.; et al., eds. (2017-12-22). "NIST Digital Library of Mathematical Functions (Release 1.0.17)". National Institute of Standards and Technology. Retrieved 2018-02-26.
  4. "cplot, Python package for plotting complex-valued functions". GitHub.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Neville, Eric Harold (1944). Jacobian Elliptic Functions. Oxford: Oxford University Press.
  6. 6.0 6.1 Sala, Kenneth L. (November 1989). "Transformations of the Jacobian Amplitude Function and Its Calculation via the Arithmetic-Geometric Mean". SIAM Journal on Mathematical Analysis. 20 (6): 1514–1528. doi:10.1137/0520100.
  7. Reinhardt, W. P.; Walker, P. L. (2010), "Jacobian Elliptic Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  8. Carlson, B. C. (2010), "Elliptic Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  9. Whittaker, Edmund Taylor; Watson, George Neville (1927). A Course of Modern Analysis (4th ed.). Cambridge University Press. p. 492.
  10. Cox, David Archibald (January 1984). "The Arithmetic-Geometric Mean of Gauss". L'Enseignement Mathématique. 30 (2): 290.
  11. 11.0 11.1 11.2 11.3 11.4 11.5 "Introduction to the Jacobi elliptic functions". The Wolfram Functions Site. Wolfram Research, Inc. 2018. Retrieved January 7, 2018.
  12. Whittaker, E.T.; Watson, G.N. (1940). A Course in Modern Analysis. New York, USA: The MacMillan Co. ISBN 978-0-521-58807-2.
  13. "Elliptic Functions: Complex Variables".
  14. Whittaker, Edmund Taylor; Watson, George Neville (1927). A Course of Modern Analysis (4th ed.). Cambridge University Press. pp. 504–505.
  15. Schett, Alois (1976). "Properties of the Taylor series expansion coefficients of the Jacobian Elliptic Functions". Math. Comp. 30 (133): 143–147. doi:10.1090/S0025-5718-1976-0391477-3. MR 0391477. S2CID 120666361.
  16. Salzer, Herbert E. (July 1962). "Quick calculation of Jacobian elliptic functions". Communications of the ACM. 5 (7): 399. doi:10.1145/368273.368573. S2CID 44953400.
  17. Smith, John I. (May 5, 1971). "The Even- and Odd-Mode Capacitance Parameters for Coupled Lines in Suspended Substrate". IEEE Transactions on Microwave Theory and Techniques. MTT-19 (5): 430. Bibcode:1971ITMTT..19..424S. doi:10.1109/TMTT.1971.1127543 – via IEEE Xplore.
  18. Reinhardt, W. P.; Walker, P. L. (2010), "Jacobian Elliptic Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  19. Reinhardt, W. P.; Walker, P. L. (2010), "Jacobian Elliptic Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  20. N.Bagis.(2020)."Evaluations of series related to Jacobi elliptic functions". preprint https://www.researchgate.net/publication/331370071_Evaluations_of_Series_Related_to_Jacobi_Elliptic_Functions
  21. 21.0 21.1 21.2 21.3 H.S. Wall. (1948). "Analytic Theory of Continued Fractions", Van Nostrand, New York.
  22. Perron, O. (1957). "Die Lehre von den Kettenbruchen", Band II, B.G. Teubner, Stuttgart.
  23. Reinhardt, W. P.; Walker, P. L. (2010), "§22.15 Inverse Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  24. Ehrhardt, Wolfgang. "The AMath and DAMath Special Functions: Reference Manual and Implementation Notes" (PDF). p. 42. Archived from the original (PDF) on 31 July 2016. Retrieved 17 July 2013.
  25. Byrd, P.F.; Friedman, M.D. (1971). Handbook of Elliptic Integrals for Engineers and Scientists (2nd ed.). Berlin: Springer-Verlag.
  26. Carlson, B. C. (2008). "Power series for inverse Jacobian elliptic functions" (PDF). Mathematics of Computation. 77 (263): 1615–1621. Bibcode:2008MaCom..77.1615C. doi:10.1090/s0025-5718-07-02049-2. Retrieved 17 July 2013.

References

External links