Johnson's SU-distribution

From The Right Wiki
(Redirected from Johnson SU distribution)
Jump to navigationJump to search
Johnson's SU
Probability density function
JohnsonSU
Cumulative distribution function
Johnson SU
Parameters γ,ξ,δ>0,λ>0 (real)
Support  to +
PDF δλ2π11+(xξλ)2e12(γ+δsinh1(xξλ))2
CDF Φ(γ+δsinh1(xξλ))
Mean ξλexpδ22sinh(γδ)
Median ξ+λsinh(γδ)
Variance λ22(exp(δ2)1)(exp(δ2)cosh(2γδ)+1)
Skewness λ3eδ2(eδ21)2((eδ2)(eδ2+2)sinh(3γδ)+3sinh(2γδ))4(VarianceX)1.5
Excess kurtosis λ4(eδ21)2(K1+K2+K3)8(VarianceX)2
K1=(eδ2)2((eδ2)4+2(eδ2)3+3(eδ2)23)cosh(4γδ)
K2=4(eδ2)2((eδ2)+2)cosh(3γδ)
K3=3(2(eδ2)+1)

The Johnson's SU-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949.[1][2] Johnson proposed it as a transformation of the normal distribution:[1]

z=γ+δsinh1(xξλ)

where z𝒩(0,1).

Generation of random variables

Let U be a random variable that is uniformly distributed on the unit interval [0, 1]. Johnson's SU random variables can be generated from U as follows:

x=λsinh(Φ1(U)γδ)+ξ

where Φ is the cumulative distribution function of the normal distribution.

Johnson's SB-distribution

N. L. Johnson[1] firstly proposes the transformation :

z=γ+δlog(xξξ+λx)

where z𝒩(0,1). Johnson's SB random variables can be generated from U as follows:

y=(1+e(zγ)/δ)1
x=λy+ξ

The SB-distribution is convenient to Platykurtic distributions (Kurtosis). To simulate SU, sample of code for its density and cumulative distribution function is available here

Applications

Johnson's SU-distribution has been used successfully to model asset returns for portfolio management.[3] This comes as a superior alternative to using the Normal distribution to model asset returns. An R package, JSUparameters, was developed in 2021 to aid in the estimation of the parameters of the best-fitting Johnson's SU-distribution for a given dataset. Johnson distributions are also sometimes used in option pricing, so as to accommodate an observed volatility smile; see Johnson binomial tree. An alternative to the Johnson system of distributions is the quantile-parameterized distributions (QPDs). QPDs can provide greater shape flexibility than the Johnson system. Instead of fitting moments, QPDs are typically fit to empirical CDF data with linear least squares. Johnson's SU-distribution is also used in the modelling of the invariant mass of some heavy mesons in the field of B-physics.[4]

References

  1. 1.0 1.1 1.2 Johnson, N. L. (1949). "Systems of Frequency Curves Generated by Methods of Translation". Biometrika. 36 (1/2): 149–176. doi:10.2307/2332539. JSTOR 2332539.
  2. Johnson, N. L. (1949). "Bivariate Distributions Based on Simple Translation Systems". Biometrika. 36 (3/4): 297–304. doi:10.1093/biomet/36.3-4.297. JSTOR 2332669.
  3. Tsai, Cindy Sin-Yi (2011). "The Real World is Not Normal" (PDF). Morningstar Alternative Investments Observer.
  4. As an example, see: LHCb Collaboration (2022). "Precise determination of the Bs0Bs0 oscillation frequency". Nature Physics. 18: 1–5. arXiv:2104.04421. doi:10.1038/s41567-021-01394-x.

Further reading

  • Hill, I. D.; Hill, R.; Holder, R. L. (1976). "Algorithm AS 99: Fitting Johnson Curves by Moments". Journal of the Royal Statistical Society. Series C (Applied Statistics). 25 (2).
  • Jones, M. C.; Pewsey, A. (2009). "Sinh-arcsinh distributions" (PDF). Biometrika. 96 (4): 761. doi:10.1093/biomet/asp053.( Preprint)
  • Tuenter, Hans J. H. (November 2001). "An algorithm to determine the parameters of SU-curves in the Johnson system of probability distributions by moment matching". The Journal of Statistical Computation and Simulation. 70 (4): 325–347. doi:10.1080/00949650108812126. MR 1872992. Zbl 1098.62523.