q-Weibull distribution

From The Right Wiki
Jump to navigationJump to search
q-Weibull distribution
Probability density function
Graph of the q-Weibull pdf
Cumulative distribution function
Graph of the q-Weibull cdf
Parameters q<2 shape (real)
λ>0 rate (real)
κ>0 shape (real)
Support x[0;+) for q1
x[0;λ(1q)1/κ) for q<1
PDF {(2q)κλ(xλ)κ1eq(x/λ)κx00x<0
CDF {1eq(x/λ)κx00x<0
Mean (see article)

In statistics, the q-Weibull distribution is a probability distribution that generalizes the Weibull distribution and the Lomax distribution (Pareto Type II). It is one example of a Tsallis distribution.

Characterization

Probability density function

The probability density function of a q-Weibull random variable is:[1]

f(x;q,λ,κ)={(2q)κλ(xλ)κ1eq((x/λ)κ)x0,0x<0,

where q < 2, κ > 0 are shape parameters and λ > 0 is the scale parameter of the distribution and

eq(x)={exp(x)if q=1,[1+(1q)x]1/(1q)if q1 and 1+(1q)x>0,01/(1q)if q1 and 1+(1q)x0,

is the q-exponential[1][2][3]

Cumulative distribution function

The cumulative distribution function of a q-Weibull random variable is:

{1eq(x/λ)κx00x<0

where

λ=λ(2q)1κ
q=1(2q)

Mean

The mean of the q-Weibull distribution is

μ(q,κ,λ)={λ(2+11q+1κ)(1q)1κB[1+1κ,2+11q]q<1λΓ(1+1κ)q=1λ(2q)(q1)1+κκB[1+1κ,(1+1q1+1κ)]1<q<1+1+2κ1+κ1+κκ+1q<2

where B() is the Beta function and Γ() is the Gamma function. The expression for the mean is a continuous function of q over the range of definition for which it is finite.

Relationship to other distributions

The q-Weibull is equivalent to the Weibull distribution when q = 1 and equivalent to the q-exponential when κ=1 The q-Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions (q1+κκ+1). The q-Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the κ parameter. The Lomax parameters are:

α=2qq1,λLomax=1λ(q1)

As the Lomax distribution is a shifted version of the Pareto distribution, the q-Weibull for κ=1 is a shifted reparameterized generalization of the Pareto. When q > 1, the q-exponential is equivalent to the Pareto shifted to have support starting at zero. Specifically:

If XqWeibull(q,λ,κ=1) and Y[Pareto(xm=1λ(q1),α=2qq1)xm], then XY

See also

References

  1. 1.0 1.1 Picoli, S. Jr.; Mendes, R. S.; Malacarne, L. C. (2003). "q-exponential, Weibull, and q-Weibull distributions: an empirical analysis". Physica A: Statistical Mechanics and Its Applications. 324 (3): 678–688. arXiv:cond-mat/0301552. Bibcode:2003PhyA..324..678P. doi:10.1016/S0378-4371(03)00071-2. S2CID 119361445.
  2. Naudts, Jan (2010). "The q-exponential family in statistical physics". Journal of Physics: Conference Series. 201 (1): 012003. arXiv:0911.5392. Bibcode:2010JPhCS.201a2003N. doi:10.1088/1742-6596/201/1/012003. S2CID 119276469.
  3. Umarov, Sabir; Tsallis, Constantino; Steinberg, Stanly (2008). "On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics" (PDF). Milan Journal of Mathematics. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725. Retrieved 9 June 2014.