Josef Stoer
Josef Stoer | |
---|---|
File:Josef Stoer.jpg | |
Born | Meschede, Germany | June 21, 1934
Nationality | German |
Alma mater | Johannes Gutenberg-Universität Mainz |
Scientific career | |
Fields | mathematician numerical analysis |
Institutions | Universität Würzburg |
Thesis | Über zwei Algorithmen zur Interpolation mit rationalen Funktionen (1961) |
Doctoral advisor | Friedrich Ludwig Bauer Klaus Samelson |
Doctoral students | Bingsheng He |
Website | www |
Josef Stoer (born 21 June 1934) is a German mathematician specializing in numerical analysis and professor emeritus of the Institut für Mathematik of Universität Würzburg.[1] Stoer was born in Meschede, and earned his Ph.D. in 1961 at Johannes Gutenberg-Universität Mainz under Friedrich Ludwig Bauer and Klaus Samelson. He has advised over 20 doctoral students.[2] He is the author (with Roland Bulirsch) of Introduction to Numerical Analysis, a standard reference for the theory of numerical methods.[3] He has an honorary doctorate from the University of Augsburg (2007) and the Technical University of Munich (1997)[4] and is a member of the Bavarian Academy of Sciences (1981).[5] The Bulirsch–Stoer algorithm is named after him and Roland Bulirsch.[6]
References
- ↑ "Institut für Mathematik". Archived from the original on 2015-06-01. Retrieved 2013-05-06.
- ↑ Josef Stoer at the Mathematics Genealogy Project
- ↑ Reviews of Introduction to Numerical Analysis:
- Carl-Erik Fröberg (1981, 1994), Mathematics of Computation, JSTOR 2007454, JSTOR 2153586
- J. Thomas King (1982), SIAM Review, JSTOR 2029454
- L.Berg (1993), Zbl 0771.65002
- Martin Buhmann (1995), The Mathematical Gazette, JSTOR 3620125
- David R. Hill (1995), MR1295246
- A. Akutowicz (2002), Zbl 1004.65001
- Gerry Leversha (2004), The Mathematical Gazette, JSTOR 3620937
- ↑ "Fakultät für Informatik: Honorary Doctors". 14 July 2023.
- ↑ "Numerische Mathematik, Volume 68, Issue 1 - Springer".
- ↑ Monroe, James L. (June 2002). "Extrapolation and the Bulirsch–Stoer algorithm". Physical Review E. 65 (6). doi:10.1103/physreve.65.066116.