Knorr quinoline synthesis

From The Right Wiki
Jump to navigationJump to search

Knorr quinoline synthesis
Named after Ludwig Knorr
Reaction type Ring forming reaction
Identifiers
RSC ontology ID RXNO:0000394

The Knorr quinoline synthesis is an intramolecular organic reaction converting a β-ketoanilide to a 2-hydroxyquinoline using sulfuric acid. This reaction was first described by Ludwig Knorr (1859–1921) in 1886[1]

Knorr quinoline synthesis
Knorr quinoline synthesis

The reaction is a type of electrophilic aromatic substitution accompanied by elimination of water. A 1964 study found that with certain reaction conditions formation of a 4-hydroxyquinoline is a competing reaction.[2] For instance, the compound benzoylacetanilide (1) forms the 2-hydroxyquinoline (2) in a large excess of polyphosphoric acid (PPA) but 4-hydroxyquinoline 3 when the amount of PPA is small. A reaction mechanism identified a N,O-dicationic intermediate A with excess acid capable of ring-closing and a monocationic intermediate B which fragments to aniline and (ultimately to) acetophenone. Aniline reacts with another equivalent of benzoylacetanilide before forming the 4-hydroxyquinoline.

Staskun 1964 Knorr cyclization reaction mechanism
Staskun 1964 Knorr cyclization reaction mechanism

A 2007 study[3] revised the reaction mechanism and based on NMR spectroscopy and theoretical calculations favors an O,O-dicationic intermediate (a superelectrophile) over the N,O dicationic intermediate . For preparative purposes triflic acid is recommended:

Knorr Cyclization with triflic acid Sai 2007
Knorr Cyclization with triflic acid Sai 2007

References

  1. Synthetische Versuche mit dem Acetessigester Justus Liebig's Annalen der Chemie Volume 236, Issue 1–2, Date: 1886, Pages: 69–115 Ludwig Knorr doi:10.1002/jlac.18862360105
  2. The Conversion of Benzoylacetanilides into 2- and 4-Hydroxyquinolines B. Staskun J. Org. Chem. 1964; 29(5); 1153–1157. doi:10.1021/jo01028a038
  3. Knorr Cyclizations and Distonic Superelectrophiles Kiran Kumar Solingapuram Sai, Thomas M. Gilbert, and Douglas A. Klumpp J. Org. Chem. 2007, 72, 9761–9764 doi:10.1021/jo7013092