Krichevsky–Trofimov estimator

From The Right Wiki
Jump to navigationJump to search

In information theory, given an unknown stationary source π with alphabet A and a sample w from π, the Krichevsky–Trofimov (KT) estimator produces an estimate pi(w) of the probability of each symbol i ∈ A. This estimator is optimal in the sense that it minimizes the worst-case regret asymptotically. For a binary alphabet and a string w with m zeroes and n ones, the KT estimator pi(w) is defined as:[1]

p0(w)=m+1/2m+n+1,p1(w)=n+1/2m+n+1.

This corresponds to the posterior mean of a Beta-Bernoulli posterior distribution with prior 1/2. For the general case the estimate is made using a Dirichlet-Categorical distribution.

See also

References

  1. Krichevsky, R. E.; Trofimov, V. K. (1981). "The Performance of Universal Encoding". IEEE Trans. Inf. Theory. IT-27 (2): 199–207. doi:10.1109/TIT.1981.1056331.