Linear Lie algebra

From The Right Wiki
Jump to navigationJump to search

In algebra, a linear Lie algebra is a subalgebra 𝔤 of the Lie algebra 𝔤𝔩(V) consisting of endomorphisms of a vector space V. In other words, a linear Lie algebra is the image of a Lie algebra representation. Any Lie algebra is a linear Lie algebra in the sense that there is always a faithful representation of 𝔤 (in fact, on a finite-dimensional vector space by Ado's theorem if 𝔤 is itself finite-dimensional.) Let V be a finite-dimensional vector space over a field of characteristic zero and 𝔤 a subalgebra of 𝔤𝔩(V). Then V is semisimple as a module over 𝔤 if and only if (i) it is a direct sum of the center and a semisimple ideal and (ii) the elements of the center are diagonalizable (over some extension field).[1]

Notes

  1. Jacobson 1979, Ch III, Theorem 10

References

  • Jacobson, Nathan (1979) [1962]. Lie algebras. New York: Dover Publications, Inc. ISBN 978-0-486-13679-0. OCLC 867771145.