List of formulae involving π

From The Right Wiki
Jump to navigationJump to search

The following is a list of significant formulae involving the mathematical constant π. Many of these formulae can be found in the article Pi, or the article Approximations of π.

Euclidean geometry

π=Cd=C2r

where C is the circumference of a circle, d is the diameter, and r is the radius. More generally,

π=Lw

where L and w are, respectively, the perimeter and the width of any curve of constant width.

A=πr2

where A is the area of a circle. More generally,

A=πab

where A is the area enclosed by an ellipse with semi-major axis a and semi-minor axis b.

C=2πagm(a,b)(a12n=22n1(an2bn2))

where C is the circumference of an ellipse with semi-major axis a and semi-minor axis b and an,bn are the arithmetic and geometric iterations of agm(a,b), the arithmetic-geometric mean of a and b with the initial values a0=a and b0=b.

A=4πr2

where A is the area between the witch of Agnesi and its asymptotic line; r is the radius of the defining circle.

A=Γ(1/4)22πr2=πr2agm(1,1/2)

where A is the area of a squircle with minor radius r, Γ is the gamma function.

A=(k+1)(k+2)πr2

where A is the area of an epicycloid with the smaller circle of radius r and the larger circle of radius kr (k), assuming the initial point lies on the larger circle.

A=(1)k+38πa2

where A is the area of a rose with angular frequency k (k) and amplitude a.

L=Γ(1/4)2πc=2πcagm(1,1/2)

where L is the perimeter of the lemniscate of Bernoulli with focal distance c.

V=43πr3

where V is the volume of a sphere and r is the radius.

SA=4πr2

where SA is the surface area of a sphere and r is the radius.

H=12π2r4

where H is the hypervolume of a 3-sphere and r is the radius.

SV=2π2r3

where SV is the surface volume of a 3-sphere and r is the radius.

Regular convex polygons

Sum S of internal angles of a regular convex polygon with n sides:

S=(n2)π

Area A of a regular convex polygon with n sides and side length s:

A=ns24cotπn

Inradius r of a regular convex polygon with n sides and side length s:

r=s2cotπn

Circumradius R of a regular convex polygon with n sides and side length s:

R=s2cscπn

Physics

A puzzle involving "colliding billiard balls":

bNπ

is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass m initially at rest between a fixed wall and another object of mass b2Nm, when struck by the other object.[1] (This gives the digits of π in base b up to N digits past the radix point.)

Formulae yielding π

Integrals

2111x2dx=π (integrating two halves y(x)=1x2 to obtain the area of the unit circle)
sechxdx=π
te1/2t2x2+xtdxdt=tet21/2x2+xtdxdt=π
11dx1x2=π
dx1+x2=π[2][note 2] (see also Cauchy distribution)
sinxxdx=π (see Dirichlet integral)
ex2dx=π (see Gaussian integral).
dzz=2πi (when the path of integration winds once counterclockwise around 0. See also Cauchy's integral formula).
0ln(1+1x2)dx=π[3]
01x4(1x)41+x2dx=227π (see also Proof that 22/7 exceeds π).
01x2(1+x)41+x2dx=π1715
0xα1x+1dx=πsinπα,0<α<1
0dxx(x+a)(x+b)=πagm(a,b) (where agm is the arithmetic–geometric mean;[4] see also elliptic integral)

Note that with symmetric integrands f(x)=f(x), formulas of the form aaf(x)dx can also be translated to formulas 20af(x)dx.

Efficient infinite series

k=0k!(2k+1)!!=k=02kk!2(2k+1)!=π2 (see also Double factorial)
k=0k!2k(2k+1)!!=2π33
k=0k!(2k)!(25k3)(3k)!2k=π2
k=0(1)k(6k)!(13591409+545140134k)(3k)!(k!)36403203k=427093440010005π (see Chudnovsky algorithm)
k=0(4k)!(1103+26390k)(k!)43964k=980122π (see Srinivasa Ramanujan, Ramanujan–Sato series)

The following are efficient for calculating arbitrary binary digits of π:

k=0(1)k4k(24k+1+24k+2+14k+3)=π[5]
k=0116k(48k+128k+418k+518k+6)=π (see Bailey–Borwein–Plouffe formula)
k=0116k(88k+2+48k+3+48k+418k+7)=2π
k=0(1)k210k(254k+114k+3+2810k+12610k+32210k+52210k+7+110k+9)=26π

Plouffe's series for calculating arbitrary decimal digits of π:[6]

k=1k2kk!2(2k)!=π+3

Other infinite series

ζ(2)=112+122+132+142+=π26 (see also Basel problem and Riemann zeta function)
ζ(4)=114+124+134+144+=π490
ζ(2n)=k=11k2n=112n+122n+132n+142n+=(1)n+1B2n(2π)2n2(2n)! , where B2n is a Bernoulli number.
n=13n14nζ(n+1)=π[7]
n=17n18nζ(n+1)=(1+2)π
n=22(3/2)n3n(ζ(n)1)=lnπ
n=1ζ(2n)x2nn=lnπxsinπx,0<|x|<1
n=0(1)n2n+1=113+1517+19=arctan1=π4 (see Leibniz formula for pi)
n=0(1)(n2n)/22n+1=1+131517+19+111=π22 (Newton, Second Letter to Oldenburg, 1676)[8]
n=0(1)n3n(2n+1)=11313+13251337+1349=3arctan13=π23 (Madhava series)
n=1(1)n+1n2=112122+132142+=π212
n=11(2n)2=122+142+162+182+=π224
n=0(12n+1)2=112+132+152+172+=π28
n=0((1)n2n+1)3=113133+153173+=π332
n=0(12n+1)4=114+134+154+174+=π496
n=0((1)n2n+1)5=115135+155175+=5π51536
n=0(12n+1)6=116+136+156+176+=π6960

In general,

n=0(1)n(2n+1)2k+1=(1)kE2k2(2k)!(π2)2k+1,k0

where E2k is the 2kth Euler number.[9]

n=0(12n)(1)n2n+1=116140=π4
n=01(4n+1)(4n+3)=113+157+1911+=π8
n=1(1)(n2+n)/2+1|G((1)n+1+6n3)/4|=|G1|+|G2||G4||G5|+|G7|+|G8||G10||G11|+=3π (see Gregory coefficients)
n=0(1/2)n22nn!2n=0n(1/2)n22nn!2=1π (where (x)n is the rising factorial)[10]
n=1(1)n+1n(n+1)(2n+1)=π3 (Nilakantha series)
n=1F2nn2(2nn)=4π2255 (where Fn is the n-th Fibonacci number)
n=1L2nn2(2nn)=π25 (where Ln is the n-th Lucas number)
n=1σ(n)e2πn=12418π (where σ is the sum-of-divisors function)
π=n=1(1)ε(n)n=1+12+13+1415+16+17+18+19110+111+112113+   (where ε(n) is the number of prime factors of the form p1(mod4) of n)[11][12]
π2=n=1(1)ε(n)n=1+1213+14+151617+18+19+   (where ε(n) is the number of prime factors of the form p3(mod4) of n)[13]
π=n=(1)nn+1/2
π2=n=1(n+1/2)2[14]

The last two formulas are special cases of

πsinπx=n=(1)nn+x(πsinπx)2=n=1(n+x)2

which generate infinitely many analogous formulas for π when x. Some formulas relating π and harmonic numbers are given here. Further infinite series involving π are:[15]

π=1Z Z=n=0((2n)!)3(42n+5)(n!)6163n+1
π=4Z Z=n=0(1)n(4n)!(21460n+1123)(n!)44412n+1210n+1
π=4Z Z=n=0(6n+1)(12)n34n(n!)3
π=32Z Z=n=0(512)8n(42n5+30n+551)(12)n364n(n!)3
π=274Z Z=n=0(227)n(15n+2)(12)n(13)n(23)n(n!)3
π=1532Z Z=n=0(4125)n(33n+4)(12)n(13)n(23)n(n!)3
π=8585183Z Z=n=0(485)n(133n+8)(12)n(16)n(56)n(n!)3
π=5523Z Z=n=0(4125)n(11n+1)(12)n(16)n(56)n(n!)3
π=23Z Z=n=0(8n+1)(12)n(14)n(34)n(n!)39n
π=39Z Z=n=0(40n+3)(12)n(14)n(34)n(n!)3492n+1
π=21111Z Z=n=0(280n+19)(12)n(14)n(34)n(n!)3992n+1
π=24Z Z=n=0(10n+1)(12)n(14)n(34)n(n!)392n+1
π=455Z Z=n=0(644n+41)(12)n(14)n(34)n(n!)35n722n+1
π=433Z Z=n=0(1)n(28n+3)(12)n(14)n(34)n(n!)33n4n+1
π=4Z Z=n=0(1)n(20n+3)(12)n(14)n(34)n(n!)322n+1
π=72Z Z=n=0(1)n(4n)!(260n+23)(n!)444n182n
π=3528Z Z=n=0(1)n(4n)!(21460n+1123)(n!)444n8822n

where (x)n is the Pochhammer symbol for the rising factorial. See also Ramanujan–Sato series.

Machin-like formulae

π4=arctan1
π4=arctan12+arctan13
π4=2arctan12arctan17
π4=2arctan13+arctan17
π4=4arctan15arctan1239 (the original Machin's formula)
π4=5arctan17+2arctan379
π4=6arctan18+2arctan157+arctan1239
π4=12arctan149+32arctan1575arctan1239+12arctan1110443
π4=44arctan157+7arctan123912arctan1682+24arctan112943

Infinite products

π4=(p1(mod4)pp1)(p3(mod4)pp+1)=34547811121312, (Euler)

where the numerators are the odd primes; each denominator is the multiple of four nearest to the numerator.

3π6=(p1(mod6)ppp1)(p5(mod6)ppp+1)=5676111213121718
π2=n=1(2n)(2n)(2n1)(2n+1)=2123434565678789 (see also Wallis product)
π2=n=1(1+1n)(1)n+1=(1+11)+1(1+12)1(1+13)+1 (another form of Wallis product)

Viète's formula:

2π=222+222+2+22

A double infinite product formula involving the Thue–Morse sequence:

π2=m1n1((4m2+n2)(4m2+2n1)24(2m2+n1)(4m2+n1)(2m2+n))ϵn,

where ϵn=(1)tn and tn is the Thue–Morse sequence (Tóth 2020). Infinite product representation from a limit:

π4=n=2(n1)n(2n1)(n+1)n(2n+1)n4n2=limn(n!)2(n+2)2n2+5n+38(n+1)2n2+7n+4[16]

Arctangent formulas

π2k+1=arctan2ak1ak,k2
π4=k2arctan2ak1ak,

where ak=2+ak1 such that a1=2.

π2=k=0arctan1F2k+1=arctan11+arctan12+arctan15+arctan113+

where Fk is the k-th Fibonacci number.

π=arctana+arctanb+arctanc

whenever a+b+c=abc and a, b, c are positive real numbers (see List of trigonometric identities). A special case is

π=arctan1+arctan2+arctan3.

Complex functions

eiπ+1=0 (Euler's identity)

The following equivalences are true for any complex z:

ezzπ
ez=1z2πi[17]

Also

1ez1=limNn=NN1z2πin12,z.

Suppose a lattice Ω is generated by two periods ω1,ω2. We define the quasi-periods of this lattice by η1=ζ(z+ω1;Ω)ζ(z;Ω) and η2=ζ(z+ω2;Ω)ζ(z;Ω) where ζ is the Weierstrass zeta function (η1 and η2 are in fact independent of z). Then the periods and quasi-periods are related by the Legendre identity:

η1ω2η2ω1=2πi.

Continued fractions

4π=1+122+322+522+722+[18]
ϖ2π=2+124+324+524+724+ (Ramanujan, ϖ is the lemniscate constant)[19]
π=3+126+326+526+726+[18]
π=41+123+225+327+429+
2π=6+2212+6212+10212+14212+18212+
π=421+1111+2121+313

For more on the fourth identity, see Euler's continued fraction formula.

Iterative algorithms

a0=1,an+1=(1+12n+1)an,π=limnan2n
a1=0,an+1=2+an,π=limn2n2an (closely related to Viète's formula)
ω(in,in1,,i1)=2+in2+in12++i12=ω(bn,bn1,,b1),ik{1,1},bk={0if ik=11if ik=1,π=limn2n+12h+1ω(100nmgm,h+1) (where gm,h+1 is the h+1-th entry of m-bit Gray code, h{0,1,,2m1})[20]
k,a1=2k,an+1=an+2k(1tan(2k1an)),π=2k+1limnan (quadratic convergence)[21]
a1=1,an+1=an+sinan,π=limnan (cubic convergence)[22]
a0=23,b0=3,an+1=hm(an,bn),bn+1=gm(an+1,bn),π=limnan=limnbn (Archimedes' algorithm, see also harmonic mean and geometric mean)[23]

For more iterative algorithms, see the Gauss–Legendre algorithm and Borwein's algorithm.

Asymptotics

(2nn)4nπn (asymptotic growth rate of the central binomial coefficients)
Cn4nπn3 (asymptotic growth rate of the Catalan numbers)
n!2πn(ne)n (Stirling's approximation)
logn!(n+12)lognn+log2π2
k=1nφ(k)3n2π2 (where φ is Euler's totient function)
k=1nφ(k)k6nπ2

The symbol means that the ratio of the left-hand side and the right-hand side tends to one as n. The symbol means that the difference between the left-hand side and the right-hand side tends to zero as n.

Hypergeometric inversions

With 2F1 being the hypergeometric function:

n=0r2(n)qn=2F1(12,12,1,z)

where

q=exp(π2F1(1/2,1/2,1,1z)2F1(1/2,1/2,1,z)),z{0,1}

and r2 is the sum of two squares function. Similarly,

1+240n=1σ3(n)qn=2F1(16,56,1,z)4

where

q=exp(2π2F1(1/6,5/6,1,1z)2F1(1/6,5/6,1,z)),z{0,1}

and σ3 is a divisor function. More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ and the Fourier coefficients j of the J-invariant (OEISA000521):

n=1jnqn=256(1z+z2)3z2(1z)2,
n=1τ(n)qn=z2(1z)22562F1(12,12,1,z)12

where in both cases

q=exp(2π2F1(1/2,1/2,1,1z)2F1(1/2,1/2,1,z)),z{0,1}.

Furthermore, by expanding the last expression as a power series in

121(1z)1/41+(1z)1/4

and setting z=1/2, we obtain a rapidly convergent series for e2π:[note 3]

e2π=w2+4w6+34w10+360w14+4239w18+,w=1221/4121/4+1.

Miscellaneous

Γ(s)Γ(1s)=πsinπs (Euler's reflection formula, see Gamma function)
πs/2Γ(s2)ζ(s)=π(1s)/2Γ(1s2)ζ(1s) (the functional equation of the Riemann zeta function)
eζ(0)=2π
eζ(0,1/2)ζ(0,1)=π (where ζ(s,a) is the Hurwitz zeta function and the derivative is taken with respect to the first variable)
π=B(1/2,1/2)=Γ(1/2)2 (see also Beta function)
π=Γ(3/4)4agm(1,1/2)2=Γ(1/4)4/3agm(1,2)2/32 (where agm is the arithmetic–geometric mean)
π=agm(θ22(1/e),θ32(1/e)) (where θ2 and θ3 are the Jacobi theta functions[24])
agm(1,2)=πϖ (due to Gauss,[25] ϖ is the lemniscate constant)
N(2ϖ)=e2π,N(ϖ)=eπ/2 (where N is the Gauss N-function)
iπ=Log(1)=limnn((1)1/n1) (where Log is the principal value of the complex logarithm)[note 4]
1π212=limn1n2k=1n(nmodk) (where nmodk is the remainder upon division of n by k)
π=limr1r2x=rry=rr{1if x2+y2r0if x2+y2>r (summing a circle's area)
π=limn4n2k=1nn2k2 (Riemann sum to evaluate the area of the unit circle)
π=limn24nn!4n(2n)!2=limn24nn(2nn)2=limn1n((2n)!!(2n1)!!)2 (by combining Stirling's approximation with Wallis product)
π=limn1nln16λ(ni) (where λ is the modular lambda function)[26][note 5]
π=limn24nln(21/4Gn)=limn24nln(21/4gn) (where Gn and gn are Ramanujan's class invariants)[27][note 6]

See also

References

Notes

  1. The relation μ0=4π107N/A2 was valid until the 2019 revision of the SI.
  2. (integral form of arctan over its entire domain, giving the period of tan)
  3. The coefficients can be obtained by reversing the Puiseux series of
    zzn=0z2n2+2nn=z2n2
    at z=0.
  4. The nth root with the smallest positive principal argument is chosen.
  5. When n+, this gives algebraic approximations to Gelfond's constant eπ.
  6. When n+, this gives algebraic approximations to Gelfond's constant eπ.

Other

  1. Galperin, G. (2003). "Playing pool with π (the number π from a billiard point of view)" (PDF). Regular and Chaotic Dynamics. 8 (4): 375–394. doi:10.1070/RD2003v008n04ABEH000252.
  2. Rudin, Walter (1987). Real and Complex Analysis (Third ed.). McGraw-Hill Book Company. ISBN 0-07-100276-6. p. 4
  3. A000796 – OEIS
  4. Carson, B. C. (2010), "Elliptic Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  5. Arndt, Jörg; Haenel, Christoph (2001). π Unleashed. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-66572-4. page 126
  6. Gourdon, Xavier. "Computation of the n-th decimal digit of π with low memory" (PDF). Numbers, constants and computation. p. 1.
  7. Weisstein, Eric W. "Pi Formulas", MathWorld
  8. Chrystal, G. (1900). Algebra, an Elementary Text-book: Part II. p. 335.
  9. Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 112
  10. Cooper, Shaun (2017). Ramanujan's Theta Functions (First ed.). Springer. ISBN 978-3-319-56171-4. (page 647)
  11. Euler, Leonhard (1748). Introductio in analysin infinitorum (in Latin). Vol. 1.{{cite book}}: CS1 maint: unrecognized language (link) p. 245
  12. Carl B. Boyer, A History of Mathematics, Chapter 21., pp. 488–489
  13. Euler, Leonhard (1748). Introductio in analysin infinitorum (in Latin). Vol. 1.{{cite book}}: CS1 maint: unrecognized language (link) p. 244
  14. Wästlund, Johan. "Summing inverse squares by euclidean geometry" (PDF). The paper gives the formula with a minus sign instead, but these results are equivalent.
  15. Simon Plouffe / David Bailey. "The world of Pi". Pi314.net. Retrieved 2011-01-29.
    "Collection of series for π". Numbers.computation.free.fr. Retrieved 2011-01-29.
  16. A. G. Llorente, Shifting Constants Through Infinite Product Transformations, preprint, 2024.
  17. Rudin, Walter (1987). Real and Complex Analysis (Third ed.). McGraw-Hill Book Company. ISBN 0-07-100276-6. p. 3
  18. 18.0 18.1 Loya, Paul (2017). Amazing and Aesthetic Aspects of Analysis. Springer. p. 589. ISBN 978-1-4939-6793-3.
  19. Perron, Oskar (1957). Die Lehre von den Kettenbrüchen: Band II (in German) (Third ed.). B. G. Teubner.{{cite book}}: CS1 maint: unrecognized language (link) p. 36, eq. 24
  20. Vellucci, Pierluigi; Bersani, Alberto Maria (2019-12-01). "$$\pi $$-Formulas and Gray code". Ricerche di Matematica. 68 (2): 551–569. arXiv:1606.09597. doi:10.1007/s11587-018-0426-4. ISSN 1827-3491. S2CID 119578297.
  21. Abrarov, Sanjar M.; Siddiqui, Rehan; Jagpal, Rajinder K.; Quine, Brendan M. (2021-09-04). "Algorithmic Determination of a Large Integer in the Two-Term Machin-like Formula for π". Mathematics. 9 (17): 2162. arXiv:2107.01027. doi:10.3390/math9172162.
  22. Arndt, Jörg; Haenel, Christoph (2001). π Unleashed. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-66572-4. page 49
  23. Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 2
  24. Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. page 225
  25. Gilmore, Tomack. "The Arithmetic-Geometric Mean of Gauss" (PDF). Universität Wien. p. 13.
  26. Borwein, J.; Borwein, P. (2000). "Ramanujan and Pi". Pi: A Source Book. Springer Link. pp. 588–595. doi:10.1007/978-1-4757-3240-5_62. ISBN 978-1-4757-3242-9.
  27. Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 248

Further reading

  • Borwein, Peter (2000). "The amazing number π" (PDF). Nieuw Archief voor Wiskunde. 5th series. 1 (3): 254–258. Zbl 1173.01300.
  • Kazuya Kato, Nobushige Kurokawa, Saito Takeshi: Number Theory 1: Fermat's Dream. American Mathematical Society, Providence 1993, ISBN 0-8218-0863-X.