List of periodic functions

From The Right Wiki
Jump to navigationJump to search

This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.

Smooth functions

All trigonometric functions listed have period 2π, unless otherwise stated. For the following trigonometric functions:

Un is the nth up/down number,
Bn is the nth Bernoulli number
in Jacobi elliptic functions, q=eπK(1m)K(m)
Name Symbol Formula [nb 1] Fourier Series
Sine sin(x) n=0(1)nx2n+1(2n+1)! sin(x)
cas (mathematics) cas(x) sin(x)+cos(x) sin(x)+cos(x)
Cosine cos(x) n=0(1)nx2n(2n)! cos(x)
cis (mathematics) eix,cis(x) cos(x) + i sin(x) cos(x)+isin(x)
Tangent tan(x) sinxcosx=n=0U2n+1x2n+1(2n+1)! 2n=1(1)n1sin(2nx) [1]
Cotangent cot(x) cosxsinx=n=0(1)n22nB2nx2n1(2n)! i+2in=1(cos2nxisin2nx) [citation needed]
Secant sec(x) 1cosx=n=0U2nx2n(2n)! -
Cosecant csc(x) 1sinx=n=0(1)n+12(22n11)B2nx2n1(2n)! -
Exsecant exsec(x) sec(x)1 -
Excosecant excsc(x) csc(x)1 -
Versine versin(x) 1cos(x) 1cos(x)
Vercosine vercosin(x) 1+cos(x) 1+cos(x)
Coversine coversin(x) 1sin(x) 1sin(x)
Covercosine covercosin(x) 1+sin(x) 1+sin(x)
Haversine haversin(x) 1cos(x)2 1212cos(x)
Havercosine havercosin(x) 1+cos(x)2 12+12cos(x)
Hacoversine hacoversin(x) 1sin(x)2 1212sin(x)
Hacovercosine hacovercosin(x) 1+sin(x)2 12+12sin(x)
Jacobi elliptic function sn sn(x,m) sinam(x,m) 2πK(m)mn=0qn+1/21q2n+1sin(2n+1)πx2K(m)
Jacobi elliptic function cn cn(x,m) cosam(x,m) 2πK(m)mn=0qn+1/21+q2n+1cos(2n+1)πx2K(m)
Jacobi elliptic function dn dn(x,m) 1msn2(x,m) π2K(m)+2πK(m)n=1qn1+q2ncosnπxK(m)
Jacobi elliptic function zn zn(x,m) 0x[dn(t,m)2E(m)K(m)]dt 2πK(m)n=1qn1q2nsinnπxK(m)
Weierstrass elliptic function (x,Λ) 1x2+λΛ{0}[1(xλ)21λ2]
Clausen function Cl2(x) 0xln|2sint2|dt k=1sinkxk2

Non-smooth functions

The following functions have period p and take x as their argument. The symbol n is the floor function of n and sgn is the sign function. K means Elliptic integral K(m)

Name Formula Limit Fourier Series Notes
Triangle wave 4p(xp22xp+12)(1)2xp+12 limm1zs(4KxpK,m) 8π2nodd(1)(n1)/2n2sin(2πnxp) non-continuous first derivative
Sawtooth wave 2(xp12+xp) limm1zn(2Kxp+K,m) 2πn=1(1)n1nsin(2πnxp) non-continuous
Square wave sgn(sin2πxp) limm1sn(4Kxp,m) 4πnodd1nsin(2πnxp) non-continuous
Pulse wave H(cos2πxpcosπtp)

where H is the Heaviside step function
t is how long the pulse stays at 1

tp+n=12nπsin(πntp)cos(2πnxp) non-continuous
Magnitude of sine wave
with amplitude, A, and period, p/2
A|sinπxp| 4A2π+n=14Aπ14n21cos2πnxp [2]: p. 193  non-continuous
Cycloid ppcos(f(1)(2πxp))2π

given f(x)=xsin(x) and f(1)(x) is its real-valued inverse.

pπ(34+n=1Jn(n)Jn1(n)ncos2πnxp)

where Jn(x) is the Bessel Function of the first kind.

non-continuous first derivative
Dirac comb n=δ(xnp) limm12K(m)pπdn(2Kxp,m) 1pn=e2nπixp non-continuous
Dirichlet function 1(x)={1x0x limm,ncos2m(n!xπ) - non-continuous

Vector-valued functions

Doubly periodic functions

Notes

  1. Formulae are given as Taylor series or derived from other entries.
  1. http://web.mit.edu/jorloff/www/18.03-esg/notes/fourier-tan.pdf [bare URL PDF]
  2. Papula, Lothar (2009). Mathematische Formelsammlung: für Ingenieure und Naturwissenschaftler. Vieweg+Teubner Verlag. ISBN 978-3834807571.