Local invariant cycle theorem

From The Right Wiki
Jump to navigationJump to search

In mathematics, the local invariant cycle theorem was originally a conjecture of Griffiths [1][2] which states that, given a surjective proper map p from a Kähler manifold X to the unit disk that has maximal rank everywhere except over 0, each cohomology class on p1(t),t0 is the restriction of some cohomology class on the entire X if the cohomology class is invariant under a circle action (monodromy action); in short,

H*(X)H*(p1(t))S1

is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the BBD decomposition.[3] Deligne also proved the following.[4][5] Given a proper morphism XS over the spectrum S of the henselization of k[T], k an algebraically closed field, if X is essentially smooth over k and Xη smooth over η, then the homomorphism on -cohomology:

H*(Xs)H*(Xη)Gal(η/η)

is surjective, where s,η are the special and generic points and the homomorphism is the composition H*(Xs)H*(X)H*(Xη)H*(Xη).

See also

Notes

  1. Clemens 1977, Introduction
  2. Griffiths 1970, Conjecture 8.1.
  3. Beilinson, Bernstein & Deligne 1982, Corollaire 6.2.9.
  4. Deligne 1980, Théorème 3.6.1.
  5. Deligne 1980, (3.6.4.)

References

  • Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre (1982). "Faisceaux pervers". Astérisque (in French). 100. Paris: Société Mathématique de France. MR 0751966.{{cite journal}}: CS1 maint: unrecognized language (link)
  • Clemens, C. H. (1977). "Degeneration of Kähler manifolds". Duke Mathematical Journal. 44 (2). doi:10.1215/S0012-7094-77-04410-6. S2CID 120378293.
  • Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014.
  • Griffiths, Phillip A. (1970). "Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems". Bulletin of the American Mathematical Society. 76 (2): 228–296. doi:10.1090/S0002-9904-1970-12444-2.
  • Morrison, David R. The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 101-119, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984. [1]