Michell solution

From The Right Wiki
Jump to navigationJump to search

In continuum mechanics, the Michell solution is a general solution to the elasticity equations in polar coordinates (r,θ) developed by John Henry Michell in 1899.[1] The solution is such that the stress components are in the form of a Fourier series in θ. Michell showed that the general solution can be expressed in terms of an Airy stress function of the form φ(r,θ)=A0r2+B0r2ln(r)+C0ln(r)+(I0r2+I1r2ln(r)+I2ln(r)+I3)θ+(A1r+B1r1+B1rθ+C1r3+D1rln(r))cosθ+(E1r+F1r1+F1rθ+G1r3+H1rln(r))sinθ+n=2(Anrn+Bnrn+Cnrn+2+Dnrn+2)cos(nθ)+n=2(Enrn+Fnrn+Gnrn+2+Hnrn+2)sin(nθ) The terms A1rcosθ and E1rsinθ define a trivial null state of stress and are ignored.

Stress components

The stress components can be obtained by substituting the Michell solution into the equations for stress in terms of the Airy stress function (in cylindrical coordinates). A table of stress components is shown below.[2]

φ σrr σrθ σθθ
r2 2 0 2
r2lnr 2lnr+1 0 2lnr+3
lnr r2 0 r2
θ 0 r2 0
r3cosθ 2rcosθ 2rsinθ 6rcosθ
rθcosθ 2r1sinθ 0 0
rlnrcosθ r1cosθ r1sinθ r1cosθ
r1cosθ 2r3cosθ 2r3sinθ 2r3cosθ
r3sinθ 2rsinθ 2rcosθ 6rsinθ
rθsinθ 2r1cosθ 0 0
rlnrsinθ r1sinθ r1cosθ r1sinθ
r1sinθ 2r3sinθ 2r3cosθ 2r3sinθ
rn+2cos(nθ) (n+1)(n2)rncos(nθ) n(n+1)rnsin(nθ) (n+1)(n+2)rncos(nθ)
rn+2cos(nθ) (n+2)(n1)rncos(nθ) n(n1)rnsin(nθ) (n1)(n2)rncos(nθ)
rncos(nθ) n(n1)rn2cos(nθ) n(n1)rn2sin(nθ) n(n1)rn2cos(nθ)
rncos(nθ) n(n+1)rn2cos(nθ) n(n+1)rn2sin(nθ) n(n+1)rn2cos(nθ)
rn+2sin(nθ) (n+1)(n2)rnsin(nθ) n(n+1)rncos(nθ) (n+1)(n+2)rnsin(nθ)
rn+2sin(nθ) (n+2)(n1)rnsin(nθ) n(n1)rncos(nθ) (n1)(n2)rnsin(nθ)
rnsin(nθ) n(n1)rn2sin(nθ) n(n1)rn2cos(nθ) n(n1)rn2sin(nθ)
rnsin(nθ) n(n+1)rn2sin(nθ) n(n+1)rn2cos(nθ) n(n+1)rn2sin(nθ)

Displacement components

Displacements (ur,uθ) can be obtained from the Michell solution by using the stress-strain and strain-displacement relations. A table of displacement components corresponding the terms in the Airy stress function for the Michell solution is given below. In this table

κ={34νforplanestrain3ν1+νforplanestress

where ν is the Poisson's ratio, and μ is the shear modulus.

φ 2μur 2μuθ
r2 (κ1)r 0
r2lnr (κ1)rlnrr (κ+1)rθ
lnr r1 0
θ 0 r1
r3cosθ (κ2)r2cosθ (κ+2)r2sinθ
rθcosθ 12[(κ1)θcosθ+{1(κ+1)lnr}sinθ] 12[(κ1)θsinθ+{1+(κ+1)lnr}cosθ]
rlnrcosθ 12[(κ+1)θsinθ{1(κ1)lnr}cosθ] 12[(κ+1)θcosθ{1+(κ1)lnr}sinθ]
r1cosθ r2cosθ r2sinθ
r3sinθ (κ2)r2sinθ (κ+2)r2cosθ
rθsinθ 12[(κ1)θsinθ{1(κ+1)lnr}cosθ] 12[(κ1)θcosθ{1+(κ+1)lnr}sinθ]
rlnrsinθ 12[(κ+1)θcosθ+{1(κ1)lnr}sinθ] 12[(κ+1)θsinθ+{1+(κ1)lnr}cosθ]
r1sinθ r2sinθ r2cosθ
rn+2cos(nθ) (κn1)rn+1cos(nθ) (κ+n+1)rn+1sin(nθ)
rn+2cos(nθ) (κ+n1)rn+1cos(nθ) (κn+1)rn+1sin(nθ)
rncos(nθ) nrn1cos(nθ) nrn1sin(nθ)
rncos(nθ) nrn1cos(nθ) n(rn1sin(nθ)
rn+2sin(nθ) (κn1)rn+1sin(nθ) (κ+n+1)rn+1cos(nθ)
rn+2sin(nθ) (κ+n1)rn+1sin(nθ) (κn+1)rn+1cos(nθ)
rnsin(nθ) nrn1sin(nθ) nrn1cos(nθ)
rnsin(nθ) nrn1sin(nθ) nrn1cos(nθ)

Note that a rigid body displacement can be superposed on the Michell solution of the form

ur=Acosθ+Bsinθuθ=Asinθ+Bcosθ+Cr

to obtain an admissible displacement field.

See also

References

  1. Michell, J. H. (1899-04-01). "On the direct determination of stress in an elastic solid, with application to the theory of plates". Proc. London Math. Soc. 31 (1): 100–124. doi:10.1112/plms/s1-31.1.100.
  2. J. R. Barber, 2002, Elasticity: 2nd Edition, Kluwer Academic Publishers.