NXF1

From The Right Wiki
Jump to navigationJump to search

An Error has occurred retrieving Wikidata item for infobox Nuclear RNA export factor 1, also known as NXF1 or TAP, is a protein which in humans is encoded by the NXF1 gene.[1][2]

Function

This gene is one member of a family of nuclear RNA export factor genes. Common domain features of this family are a noncanonical RNP-type RNA-binding domain (RBD), 4 leucine-rich repeats (LRRs), a nuclear transport factor 2 (NTF2)-like domain that allows heterodimerization with NTF2-related export protein-1 (NXT1), and a ubiquitin-associated domain that mediates interactions with nucleoporins. Alternative splicing results in transcript variants. The LRRs and NTF2-like domains are required for export activity. The encoded protein of this gene shuttles between the nucleus and the cytoplasm and binds in vivo to poly(A)+ RNA. It is the vertebrate homologue of the yeast protein Mex67p.[2][3] The encoded protein overcomes the mRNA export block caused by the presence of saturating amounts of CTE (constitutive transport element) RNA of type D retroviruses.[4] A variant allele of the homologous Nxf1 gene in mice suppresses a class of mutations caused by integration of an endogenous retrovirus (intracisternal A particle) into an intron.[5][6]

Interactions

NXF1 has been shown to interact with TNPO2,[7] MAGOH,[8] U2 small nuclear RNA auxiliary factor 1,[9] DHX9,[10] HuD[11] and NUP214.[12][13]

Tap protein

In molecular biology, another name for the protein NXF1 is TAP. In particular this entry focuses on the C-terminal domain, which also contains the UBA (protein domain).

TAP_C
File:PDB 1oai EBI.jpg
complex between tap uba domain and fxfg nucleoporin peptide
Identifiers
SymbolTAP_C
PfamPF03943
Pfam clanCL0214
InterProIPR005637
SCOP21go5 / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

This entry contains the NXF family of shuttling transport receptors for nuclear export of mRNA, which include:

  • vertebrate mRNA export factor TAP or nuclear RNA export factor 1 (NXF1).
  • Caenorhabditis elegans nuclear RNA export factor 1 (nxf-1).
  • yeast mRNA export factor MEX67. Members of the NXF family have a modular structure. A nuclear localization sequence and a noncanonical RNA recognition motif (RRM) (see PROSITEDOC) followed by four LRR repeats are located in its N-terminal half. The C-terminal half contains a NTF2 domain (see [href="http://expasy.org/prosite/PDOC50177 PROSITEDOC]) followed by a second domain, TAP-C. The TAP-C domain is important for binding to FG repeat-containing nuclear pore proteins (FG-nucleoporins) and is sufficient to mediate nuclear shuttling.[14][15]

The Tap-C domain is made of four alpha helices packed against each other. The arrangement of helices 1, 2 and 3 is similar to that seen in a UBA fold. and is joined to the next module by flexible 12-residue Pro-rich linker.[14][15]

Function

Nuclear export of mRNAs is mediated by the Tap protein.

Structure

Tap can form a multimeric complex with itself and with other members of the NXF family. Three functional domains of Tap have been well characterized: the RNA-binding domain, the Nuclear Transport Factor 2 (NTF2)-like domain, and the ubiquitin-associated (UBA) domain.

References

  1. Yoon DW, Lee H, Seol W, DeMaria M, Rosenzweig M, Jung JU (May 1997). "Tap: a novel cellular protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation". Immunity. 6 (5): 571–82. doi:10.1016/S1074-7613(00)80345-3. PMID 9175835.
  2. 2.0 2.1 Grüter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (April 1998). "TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus". Molecular Cell. 1 (5): 649–59. doi:10.1016/S1097-2765(00)80065-9. PMID 9660949.
  3. Katahira J, Strässer K, Podtelejnikov A, Mann M, Jung JU, Hurt E (May 1999). "The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human". The EMBO Journal. 18 (9): 2593–609. doi:10.1093/emboj/18.9.2593. PMC 1171339. PMID 10228171.
  4. "Entrez Gene: NXF1 nuclear RNA export factor 1".
  5. Floyd JA, Gold DA, Concepcion D, Poon TH, Wang X, Keithley E, Chen D, Ward EJ, Chinn SB, Friedman RA, Yu HT, Moriwaki K, Shiroishi T, Hamilton BA (November 2003). "A natural allele of Nxf1 suppresses retrovirus insertional mutations". Nature Genetics. 35 (3): 221–8. doi:10.1038/ng1247. PMC 2756099. PMID 14517553.
  6. Concepcion D, Flores-García L, Hamilton BA (May 2009). "Multipotent genetic suppression of retrotransposon-induced mutations by Nxf1 through fine-tuning of alternative splicing". PLOS Genetics. 5 (5): e1000484. doi:10.1371/journal.pgen.1000484. PMC 2674570. PMID 19436707.
  7. Shamsher MK, Ploski J, Radu A (October 2002). "Karyopherin beta 2B participates in mRNA export from the nucleus". Proceedings of the National Academy of Sciences of the United States of America. 99 (22): 14195–9. Bibcode:2002PNAS...9914195S. doi:10.1073/pnas.212518199. PMC 137860. PMID 12384575.
  8. Kataoka N, Diem MD, Kim VN, Yong J, Dreyfuss G (November 2001). "Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex". The EMBO Journal. 20 (22): 6424–33. doi:10.1093/emboj/20.22.6424. PMC 125744. PMID 11707413.
  9. Zolotukhin AS, Tan W, Bear J, Smulevitch S, Felber BK (February 2002). "U2AF participates in the binding of TAP (NXF1) to mRNA". The Journal of Biological Chemistry. 277 (6): 3935–42. doi:10.1074/jbc.M107598200. PMID 11724776.
  10. Tang H, Wong-Staal F (October 2000). "Specific interaction between RNA helicase A and Tap, two cellular proteins that bind to the constitutive transport element of type D retrovirus". The Journal of Biological Chemistry. 275 (42): 32694–700. doi:10.1074/jbc.M003933200. PMID 10924507.
  11. Saito K, Fujiwara T, Katahira J, Inoue K, Sakamoto H (August 2004). "TAP/NXF1, the primary mRNA export receptor, specifically interacts with a neuronal RNA-binding protein HuD". Biochemical and Biophysical Research Communications. 321 (2): 291–7. doi:10.1016/j.bbrc.2004.06.140. PMID 15358174.
  12. Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P, Izaurralde E (December 2000). "TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture". Molecular and Cellular Biology. 20 (23): 8996–9008. doi:10.1128/MCB.20.23.8996-9008.2000. PMC 86553. PMID 11073998.
  13. Schmitt I, Gerace L (November 2001). "In vitro analysis of nuclear transport mediated by the C-terminal shuttle domain of Tap". The Journal of Biological Chemistry. 276 (45): 42355–63. doi:10.1074/jbc.M103916200. PMID 11551912.
  14. 14.0 14.1 Grant RP, Hurt E, Neuhaus D, Stewart M (April 2002). "Structure of the C-terminal FG-nucleoporin binding domain of Tap/NXF1". Nature Structural Biology. 9 (4): 247–51. doi:10.1038/nsb773. PMID 11875519. S2CID 11338341.
  15. 15.0 15.1 Suyama M, Doerks T, Braun IC, Sattler M, Izaurralde E, Bork P (July 2000). "Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins". EMBO Reports. 1 (1): 53–8. doi:10.1093/embo-reports/kvd009. PMC 1083685. PMID 11256625.

External links

  • PDBe-KB provides an overview of all the structure information available in the PDB for Human Nuclear RNA export factor 1 (NXF1)