Partition topology

From The Right Wiki
Jump to navigationJump to search

In mathematics, a partition topology is a topology that can be induced on any set X by partitioning X into disjoint subsets P; these subsets form the basis for the topology. There are two important examples which have their own names:

  • The odd–even topology is the topology where X= and P={{2k1,2k}:k}. Equivalently, P={{1,2},{3,4},{5,6},}.
  • The deleted integer topology is defined by letting X=n(n1,n) and P={(0,1),(1,2),(2,3),}.

The trivial partitions yield the discrete topology (each point of X is a set in P, so P={{x}:xX}) or indiscrete topology (the entire set X is in P, so P={X}). Any set X with a partition topology generated by a partition P can be viewed as a pseudometric space with a pseudometric given by: d(x,y)={0if x and y are in the same partition element1otherwise. This is not a metric unless P yields the discrete topology. The partition topology provides an important example of the independence of various separation axioms. Unless P is trivial, at least one set in P contains more than one point, and the elements of this set are topologically indistinguishable: the topology does not separate points. Hence X is not a Kolmogorov space, nor a T1 space, a Hausdorff space or an Urysohn space. In a partition topology the complement of every open set is also open, and therefore a set is open if and only if it is closed. Therefore, X is regular, completely regular, normal and completely normal. X/P is the discrete topology.

See also

References

  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446