Proof of Bertrand's postulate

From The Right Wiki
Jump to navigationJump to search

In mathematics, Bertrand's postulate (now a theorem) states that, for each n2, there is a prime p such that n<p<2n. First conjectured in 1845 by Joseph Bertrand,[1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.[2] The following elementary proof was published by Paul Erdős in 1932, as one of his earliest mathematical publications.[3] The basic idea is to show that the central binomial coefficients must have a prime factor within the interval (n,2n) in order to be large enough. This is achieved through analysis of their factorizations. The main steps of the proof are as follows. First, one shows that the contribution of every prime power factor pr in the prime decomposition of the central binomial coefficient (2nn)=(2n)!/(n!)2 is at most 2n; then, one shows that every prime larger than 2n appears at most once. The next step is to prove that (2nn) has no prime factors in the interval (2n3,n). As a consequence of these bounds, the contribution to the size of (2nn) coming from the prime factors that are at most n grows asymptotically as θn for some θ<4. Since the asymptotic growth of the central binomial coefficient is at least 4n/2n, the conclusion is that, by contradiction and for large enough n, the binomial coefficient must have another prime factor, which can only lie between n and 2n. The argument given is valid for all n427. The remaining values of n are verified by direct inspection, which completes the proof.

Lemmas in the proof

The proof uses the following four lemmas to establish facts about the primes present in the central binomial coefficients.

Lemma 1

For any integer n>0, we have

4n2n(2nn).

Proof: Applying the binomial theorem,

4n=(1+1)2n=k=02n(2nk)=2+k=12n1(2nk)2n(2nn),

since (2nn) is the largest term in the sum in the right-hand side, and the sum has 2n terms (including the initial 2 outside the summation).

Lemma 2

For a fixed prime p, define R=R(n,p) to be the p-adic order of (2nn), that is, the largest natural number r such that pr divides (2nn). For any prime p, pR2n. Proof: The exponent of p in n! is given by Legendre's formula

j=1npj,

so

R=j=12npj2j=1npj=j=1(2npj2npj)

But each term of the last summation must be either zero (if n/pjmod1<1/2) or one (if n/pjmod11/2), and all terms with j>logp(2n) are zero. Therefore,

Rlogp(2n),

and

pRplogp(2n)=2n.

Lemma 3

If p is an odd prime and 2n3<pn, then R(n,p)=0. Proof: There are exactly two factors of p in the numerator of the expression (2nn)=(2n)!/(n!)2, coming from the two terms p and 2p in (2n)!, and also two factors of p in the denominator from one copy of the term p in each of the two factors of n!. These factors all cancel, leaving no factors of p in (2nn). (The bound on p in the preconditions of the lemma ensures that 3p is too large to be a term of the numerator, and the assumption that p is odd is needed to ensure that 2p contributes only one factor of p to the numerator.)

Lemma 4

An upper bound is supplied for the primorial function,

n#=pnp,

where the product is taken over all prime numbers p less than or equal to n. For all n1, n#<4n. Proof: We use complete induction. For n=1,2 we have 1#=1<4 and 2#=2<42=16. Let us assume that the inequality holds for all 1n2k1. Since n=2k>2 is composite, we have

(2k)#=(2k1)#<42k1<42k.

Now let us assume that the inequality holds for all 1n2k. Since (2k+1k)=(2k+1)!k!(k+1)! is an integer and all the primes k+2p2k+1 appear only in the numerator, we have

(2k+1)#(k+1)#(2k+1k)=12[(2k+1k)+(2k+1k+1)]<12(1+1)2k+1=4k.

Therefore,

(2k+1)#=(k+1)#(2k+1)#(k+1)#4k+1(2k+1k)<4k+14k=42k+1.

Proof of Bertrand's Postulate

Assume that there is a counterexample: an integer n ≥ 2 such that there is no prime p with n < p < 2n. If 2 ≤ n < 427, then p can be chosen from among the prime numbers 3, 5, 7, 13, 23, 43, 83, 163, 317, 631 (each being the largest prime less than twice its predecessor) such that n < p < 2n. Therefore, n ≥ 427. There are no prime factors p of (2nn) such that:

  • 2n < p, because every factor must divide (2n)!;
  • p = 2n, because 2n is not prime;
  • n < p < 2n, because we assumed there is no such prime number;
  • 2n / 3 < pn: by Lemma 3.

Therefore, every prime factor p satisfies p ≤ 2n / 3. When p>2n, the number (2nn) has at most one factor of p. By Lemma 2, for any prime p we have pR(p,n) ≤ 2n, and π(x)x1 since 1 is neither prime nor composite. Then, starting with Lemma 1 and decomposing the right-hand side into its prime factorization, and finally using Lemma 4, these bounds give:

4n2n(2nn)=(p2npR(p,n))(2n<p2n/3pR(p,n))<(p2n2n)(p2n/3p)(2n)2n142n/3.

Therefore

4n/3(2n)2n, which simplifies to 22n(2n)3.

Taking logarithms yields

2n3log2(2n).

By concavity of the right-hand side as a function of n, the last inequality is necessarily verified on an interval. Since it holds true for n=426 and it does not for n=427, we obtain

n<427.

But these cases have already been settled, and we conclude that no counterexample to the postulate is possible.

Addendum to proof

It is possible to reduce the bound to n=50. For n17, we get π(n)<n21, so we can say that the product pR is at most (2n)0.52n1, which gives

4n2n(2nn)(2n)0.52n142n/342n(2n)322n3log2(2n)

which is true for n=49 and false for n=50.

References

  1. Bertrand, Joseph (1845), "Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme.", Journal de l'École Royale Polytechnique (in français), 18 (Cahier 30): 123–140.
  2. Ramanujan, S. (1919), "A proof of Bertrand's postulate", Journal of the Indian Mathematical Society, 11: 181–182
  3. Erdős, Pál (1932), "Beweis eines Satzes von Tschebyschef" [Proof of a theorem of Chebyshev] (PDF), Acta Scientarium Mathematicarum (Szeged), 5 (3–4): 194–198, Zbl 004.10103

External links