Racah polynomials

From The Right Wiki
Jump to navigationJump to search

In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients. The Racah polynomials were first defined by Wilson (1978) and are given by

pn(x(x+γ+δ+1))=4F3[nn+α+β+1xx+γ+δ+1α+1γ+1β+δ+1;1].

Orthogonality

y=0NRn(x;α,β,γ,δ)Rm(x;α,β,γ,δ)γ+δ+1+2yγ+δ+1+yωy=hnδn,m,[1]
when α+1=N,
where R is the Racah polynomial,
x=y(y+γ+δ+1),
δn,m is the Kronecker delta function and the weight functions are
ωy=(α+1)y(β+δ+1)y(γ+1)y(γ+δ+2)y(α+γ+δ+1)y(β+γ+1)y(δ+1)yy!,
and
hn=(β)N(γ+δ+1)N(β+γ+1)N(δ+1)N(n+α+β+1)nn!(α+β+2)2n(α+δγ+1)n(αδ+1)n(β+1)n(α+1)n(β+δ+1)n(γ+1)n,
()n is the Pochhammer symbol.

Rodrigues-type formula

ω(x;α,β,γ,δ)Rn(λ(x);α,β,γ,δ)=(γ+δ+1)nnλ(x)nω(x;α+n,β+n,γ+n,δ),[2]
where is the backward difference operator,
λ(x)=x(x+γ+δ+1).

Generating functions

There are three generating functions for x{0,1,2,...,N}

when β+δ+1=Norγ+1=N,
2F1(x,x+αγδ;α+1;t)2F1(x+β+δ+1,x+γ+1;β+1;t)
=n=0N(β+δ+1)n(γ+1)n(β+1)nn!Rn(λ(x);α,β,γ,δ)tn,
when α+1=Norγ+1=N,
2F1(x,x+βγ;β+δ+1;t)2F1(x+α+1,x+γ+1;αδ+1;t)
=n=0N(α+1)n(γ+1)n(αδ+1)nn!Rn(λ(x);α,β,γ,δ)tn,
when α+1=Norβ+δ+1=N,
2F1(x,xδ;γ+1;t)2F1(x+α+1;x+β+γ+1;α+βγ+1;t)
=n=0N(α+1)n(β+δ+1)n(α+βγ+1)nn!Rn(λ(x);α,β,γ,δ)tn.

Connection formula for Wilson polynomials

When α=a+b1,β=c+d1,γ=a+d1,δ=ad,xa+ix,

Rn(λ(a+ix);a+b1,c+d1,a+d1,ad)=Wn(x2;a,b,c,d)(a+b)n(a+c)n(a+d)n,
where W are Wilson polynomials.

q-analog

Askey & Wilson (1979) introduced the q-Racah polynomials defined in terms of basic hypergeometric functions by

pn(qx+qx+1cd;a,b,c,d;q)=4ϕ3[qnabqn+1qxqx+1cdaqbdqcq;q;q].

They are sometimes given with changes of variables as

Wn(x;a,b,c,N;q)=4ϕ3[qnabqn+1qxcqxnaqbcqqN;q;q].

References

  1. Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Wilson Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  2. Koekoek, Roelof; Swarttouw, René F. (1998), The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue