Rectified 600-cell

From The Right Wiki
Jump to navigationJump to search
Rectified 600-cell
File:Rectified 600-cell schlegel halfsolid.png
Schlegel diagram, shown as Birectified 120-cell, with 119 icosahedral cells colored
Type Uniform 4-polytope
Uniform index 34
Schläfli symbol t1{3,3,5}
or r{3,3,5}
Coxeter-Dynkin diagram File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
Cells 600 (3.3.3.3) File:Uniform polyhedron-33-t1.svg
120 {3,5} File:Icosahedron.png
Faces 1200+2400 {3}
Edges 3600
Vertices 720
Vertex figure File:Rectified 600-cell verf.png
pentagonal prism
Symmetry group H4, [3,3,5], order 14400
Properties convex, vertex-transitive, edge-transitive

In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices. Containing the cell realms of both the regular 120-cell and the regular 600-cell, it can be considered analogous to the polyhedron icosidodecahedron, which is a rectified icosahedron and rectified dodecahedron. The vertex figure of the rectified 600-cell is a uniform pentagonal prism.

Semiregular polytope

It is one of three semiregular 4-polytopes made of two or more cells which are Platonic solids, discovered by Thorold Gosset in his 1900 paper. He called it a octicosahedric for being made of octahedron and icosahedron cells. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC600.

Alternate names

  • octicosahedric (Thorold Gosset)
  • Icosahedral hexacosihecatonicosachoron
  • Rectified 600-cell (Norman W. Johnson)
  • Rectified hexacosichoron
  • Rectified polytetrahedron
  • Rox (Jonathan Bowers)

Images

Orthographic projections by Coxeter planes
H4 - F4
File:600-cell t1 H4.svg
[30]
File:600-cell t1 p20.svg
[20]
File:600-cell t1 F4.svg
[12]
H3 A2 / B3 / D4 A3 / B2
File:600-cell t1 H3.svg
[10]
File:600-cell t1 A2.svg
[6]
File:600-cell t1.svg
[4]
Stereographic projection Net
File:Stereographic rectified 600-cell.png File:Rectified hexacosichoron net.png

Related polytopes

Diminished rectified 600-cell

120-diminished rectified 600-cell
Type 4-polytope
Cells 840 cells:
600 square pyramid
120 pentagonal prism
120 pentagonal antiprism
Faces 2640:
1800 {3}
600 {4}
240 {5}
Edges 2400
Vertices 600
Vertex figure File:Spidrox-vertex figure.png
Bi-diminished pentagonal prism
(1) 3.3.3.3 + (4) 3.3.4 File:Square pyramid.png
(2) 4.4.5 File:Pentagonal prism.png
(2) 3.3.3.5 File:Pentagonal antiprism.png
Symmetry group 1/12[3,3,5], order 1200
Properties convex

A related vertex-transitive polytope can be constructed with equal edge lengths removes 120 vertices from the rectified 600-cell, but isn't uniform because it contains square pyramid cells,[1] discovered by George Olshevsky, calling it a swirlprismatodiminished rectified hexacosichoron, with 840 cells (600 square pyramids, 120 pentagonal prisms, and 120 pentagonal antiprisms), 2640 faces (1800 triangles, 600 square, and 240 pentagons), 2400 edges, and 600 vertices. It has a chiral bi-diminished pentagonal prism vertex figure. Each removed vertex creates a pentagonal prism cell, and diminishes two neighboring icosahedra into pentagonal antiprisms, and each octahedron into a square pyramid.[2] This polytope can be partitioned into 12 rings of alternating 10 pentagonal prisms and 10 antiprisms, and 30 rings of square pyramids.

Schlegel diagram Orthogonal projection
File:Spidrox-ring2-perspective.png
Two orthogonal rings shown
File:Spidrox-square pyramid ring.png
2 rings of 30 red square pyramids, one ring along perimeter, and one centered.

File:Swirlprismatodiminished rectified hexacosichoron net.png
Net

H4 family

H4 family polytopes
120-cell rectified
120-cell
truncated
120-cell
cantellated
120-cell
runcinated
120-cell
cantitruncated
120-cell
runcitruncated
120-cell
omnitruncated
120-cell
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png
{5,3,3} r{5,3,3} t{5,3,3} rr{5,3,3} t0,3{5,3,3} tr{5,3,3} t0,1,3{5,3,3} t0,1,2,3{5,3,3}
File:120-cell t0 H3.svg File:120-cell t1 H3.svg File:120-cell t01 H3.svg File:120-cell t02 H3.png File:120-cell t03 H3.png File:120-cell t012 H3.png File:120-cell t013 H3.png File:120-cell t0123 H3.png
File:600-cell t0 H3.svg File:600-cell t1 H3.svg File:600-cell t01 H3.svg File:600-cell t02 H3.svg File:120-cell t12 H3.png File:120-cell t123 H3.png File:120-cell t023 H3.png
600-cell rectified
600-cell
truncated
600-cell
cantellated
600-cell
bitruncated
600-cell
cantitruncated
600-cell
runcitruncated
600-cell
omnitruncated
600-cell
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png
{3,3,5} r{3,3,5} t{3,3,5} rr{3,3,5} 2t{3,3,5} tr{3,3,5} t0,1,3{3,3,5} t0,1,2,3{3,3,5}

Pentagonal prism vertex figures

r{p,3,5}
Space S3 H3
Form Finite Compact Paracompact Noncompact
Name r{3,3,5}
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
r{4,3,5}
File:CDel node.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
File:CDel nodes 11.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
r{5,3,5}
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
r{6,3,5}
File:CDel node.pngFile:CDel 6.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
File:CDel branch 11.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
r{7,3,5}
File:CDel node.pngFile:CDel 7.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
... r{∞,3,5}
File:CDel node.pngFile:CDel infin.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
File:CDel labelinfin.pngFile:CDel branch 11.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
Image File:Stereographic rectified 600-cell.png File:H3 435 CC center 0100.png File:H3 535 CC center 0100.png File:H3 635 boundary 0100.png
Cells
File:Icosahedron.png
{3,5}
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
File:Uniform polyhedron-33-t1.svg
r{3,3}
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Cuboctahedron.png
r{4,3}
File:CDel node.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Icosidodecahedron.png
r{5,3}
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Uniform tiling 63-t1.svg
r{6,3}
File:CDel node.pngFile:CDel 6.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Triheptagonal tiling.svg
r{7,3}
File:CDel node.pngFile:CDel 7.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:H2 tiling 23i-2.png
r{∞,3}
File:CDel node.pngFile:CDel infin.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png

References

  1. Category S4: Scaliform Swirlprisms spidrox
  2. Klitzing, Richard. "4D convex scaliform polychora swirlprismatodiminished rectified hexacosachoron".
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Four-dimensional Archimedean Polytopes (German), Marco Möller, 2004 PhD dissertation [2]

External links

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds