Sedenion

From The Right Wiki
(Redirected from Sedenions)
Jump to navigationJump to search
Sedenions
Symbol𝕊
TypeHypercomplex algebra
Unitse0, ..., e15
Multiplicative identitye0
Main properties
Common systems
Less common systems

In abstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers, usually represented by the capital letter S, boldface S or blackboard bold 𝕊 The sedenions are obtained by applying the Cayley–Dickson construction to the octonions, which can be mathematically expressed as 𝕊=𝒞𝒟(𝕆,1).[1] As such, the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, called the trigintaduonions or sometimes the 32-nions.[2] It is possible to continue applying the Cayley–Dickson construction arbitrarily many times. The term sedenion is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matrices over the real numbers, or that studied by Smith (1995).

Arithmetic

File:Sedenion-Fano Tesseract.gif
A visualization of a 4D extension to the cubic octonion,[3] showing the 35 triads as hyperplanes through the real (e0) vertex of the sedenion example given

Every sedenion is a linear combination of the unit sedenions e0, e1, e2, e3, ..., e15, which form a basis of the vector space of sedenions. Every sedenion can be represented in the form

x=x0e0+x1e1+x2e2++x14e14+x15e15.

Addition and subtraction are defined by the addition and subtraction of corresponding coefficients and multiplication is distributive over addition. Like other algebras based on the Cayley–Dickson construction, the sedenions contain the algebra they were constructed from. So, they contain the octonions (generated by e0 to e7 in the table below), and therefore also the quaternions (generated by e0 to e3), complex numbers (generated by e0 and e1) and real numbers (generated by e0).

Multiplication

Like octonions, multiplication of sedenions is neither commutative nor associative. However, in contrast to the octonions, the sedenions do not even have the property of being alternative. They do, however, have the property of power associativity, which can be stated as that, for any element x of 𝕊, the power xn is well defined. They are also flexible. The sedenions have a multiplicative identity element e0 and multiplicative inverses, but they are not a division algebra because they have zero divisors. This means that two nonzero sedenions can be multiplied to obtain zero: an example is (e3+e10)(e6e15). All hypercomplex number systems after sedenions that are based on the Cayley–Dickson construction also contain zero divisors. The sedenion multiplication table is shown below:

eiej ej
e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
ei e0 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 e1 e0 e3 e2 e5 e4 e7 e6 e9 e8 e11 e10 e13 e12 e15 e14
e2 e2 e3 e0 e1 e6 e7 e4 e5 e10 e11 e8 e9 e14 e15 e12 e13
e3 e3 e2 e1 e0 e7 e6 e5 e4 e11 e10 e9 e8 e15 e14 e13 e12
e4 e4 e5 e6 e7 e0 e1 e2 e3 e12 e13 e14 e15 e8 e9 e10 e11
e5 e5 e4 e7 e6 e1 e0 e3 e2 e13 e12 e15 e14 e9 e8 e11 e10
e6 e6 e7 e4 e5 e2 e3 e0 e1 e14 e15 e12 e13 e10 e11 e8 e9
e7 e7 e6 e5 e4 e3 e2 e1 e0 e15 e14 e13 e12 e11 e10 e9 e8
e8 e8 e9 e10 e11 e12 e13 e14 e15 e0 e1 e2 e3 e4 e5 e6 e7
e9 e9 e8 e11 e10 e13 e12 e15 e14 e1 e0 e3 e2 e5 e4 e7 e6
e10 e10 e11 e8 e9 e14 e15 e12 e13 e2 e3 e0 e1 e6 e7 e4 e5
e11 e11 e10 e9 e8 e15 e14 e13 e12 e3 e2 e1 e0 e7 e6 e5 e4
e12 e12 e13 e14 e15 e8 e9 e10 e11 e4 e5 e6 e7 e0 e1 e2 e3
e13 e13 e12 e15 e14 e9 e8 e11 e10 e5 e4 e7 e6 e1 e0 e3 e2
e14 e14 e15 e12 e13 e10 e11 e8 e9 e6 e7 e4 e5 e2 e3 e0 e1
e15 e15 e14 e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

Sedenion properties

File:PG(3,2) g005.png
An illustration of the structure of PG(3,2) that provides the multiplication law for sedenions, as shown by Saniga, Holweck & Pracna (2015). Any three points (representing three sedenion imaginary units) lying on the same line are such that the product of two of them yields the third one, sign disregarded.

From the above table, we can see that:

e0ei=eie0=eifor alli,
eiei=e0fori0, and
eiej=ejeiforijwithi,j0.

Anti-associative

The sedenions are not fully anti-associative. Choose any four generators, i,j,k and l. The following 5-cycle shows that these five relations cannot all be anti-associative. (ij)(kl)=((ij)k)l=(i(jk))l=i((jk)l)=i(j(kl))=(ij)(kl)=0 In particular, in the table above, using e1,e2,e4 and e8 the last expression associates. (e1e2)e12=e1(e2e12)=e15

Quaternionic subalgebras

The particular sedenion multiplication table shown above is represented by 35 triads. The table and its triads have been constructed from an octonion represented by the bolded set of 7 triads using Cayley–Dickson construction. It is one of 480 possible sets of 7 triads (one of two shown in the octonion article) and is the one based on the Cayley–Dickson construction of quaternions from two possible quaternion constructions from the complex numbers. The binary representations of the indices of these triples bitwise XOR to 0. These 35 triads are: { {1, 2, 3}, {1, 4, 5}, {1, 7, 6}, {1, 8, 9}, {1, 11, 10}, {1, 13, 12}, {1, 14, 15},
{2, 4, 6}, {2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 14, 12}, {2, 15, 13}, {3, 4, 7},
{3, 6, 5}, {3, 8, 11}, {3, 10, 9}, {3, 13, 14}, {3, 15, 12}, {4, 8, 12}, {4, 9, 13},
{4, 10, 14}, {4, 11, 15}, {5, 8, 13}, {5, 10, 15}, {5, 12, 9}, {5, 14, 11}, {6, 8, 14},
{6, 11, 13}, {6, 12, 10}, {6, 15, 9}, {7, 8, 15}, {7, 9, 14}, {7, 12, 11}, {7, 13, 10} }

Zero divisors

The list of 84 sets of zero divisors {ea,eb,ec,ed}, where (ea+eb)(ec+ed)=0: Sedenion Zero Divisors{ea,eb,ec,ed}where(ea+eb)(ec+ed)=01a6,c>a,9b15{9d15}{9d15}{9d15}{9d15}{e1,e10,e5,e14}{e1,e10,e4,e15}{e1,e10,e7,e12}{e1,e10,e6,e13}{e1,e11,e4,e14}{e1,e11,e6,e12}{e1,e11,e5,e15}{e1,e11,e7,e13}{e1,e12,e2,e15}{e1,e12,e3,e14}{e1,e12,e6,e11}{e1,e12,e7,e10}{e1,e13,e6,e10}{e1,e13,e2,e14}{e1,e13,e7,e11}{e1,e13,e3,e15}{e1,e14,e2,e13}{e1,e14,e4,e11}{e1,e14,e3,e12}{e1,e14,e5,e10}{e1,e15,e3,e13}{e1,e15,e2,e12}{e1,e15,e4,e10}{e1,e15,e5,e11}{e2,e9,e4,e15}{e2,e9,e5,e14}{e2,e9,e6,e13}{e2,e9,e7,e12}{e2,e11,e5,e12}{e2,e11,e4,e13}{e2,e11,e6,e15}{e2,e11,e7,e14}{e2,e12,e3,e13}{e2,e12,e5,e11}{e2,e12,e7,e9}{e2,e13,e3,e12}{e2,e13,e4,e11}{e2,e13,e6,e9}{e2,e14,e5,e9}{e2,e14,e3,e15}{e2,e14,e3,e14}{e2,e15,e4,e9}{e2,e15,e3,e14}{e2,e15,e6,e11}{e3,e9,e6,e12}{e3,e9,e4,e14}{e3,e9,e7,e13}{e3,e9,e5,e15}{e3,e10,e4,e13}{e3,e10,e5,e12}{e3,e10,e7,e14}{e3,e10,e6,e15}{e3,e12,e5,e10}{e3,e12,e6,e9}{e3,e14,e4,e9}{e3,e13,e4,e10}{e3,e15,e5,e9}{e3,e13,e7,e9}{e3,e15,e6,e10}{e3,e14,e7,e10}{e4,e9,e7,e10}{e4,e9,e6,e11}{e4,e10,e5,e11}{e4,e10,e7,e9}{e4,e11,e6,e9}{e4,e11,e5,e10}{e4,e13,e6,e15}{e4,e13,e7,e14}{e4,e14,e7,e13}{e4,e14,e5,e15}{e4,e15,e5,e14}{e4,e15,e6,e13}{e5,e10,e6,e9}{e5,e9,e6,e10}{e5,e11,e7,e9}{e5,e9,e7,e11}{e5,e12,e7,e14}{e5,e12,e6,e15}{e5,e15,e6,e12}{e5,e14,e7,e12}{e6,e11,e7,e10}{e6,e10,e7,e11}{e6,e13,e7,e12}{e6,e12,e7,e13}

Applications

Moreno (1998) showed that the space of pairs of norm-one sedenions that multiply to zero is homeomorphic to the compact form of the exceptional Lie group G2. (Note that in his paper, a "zero divisor" means a pair of elements that multiply to zero.) Guillard & Gresnigt (2019) demonstrated that the three generations of leptons and quarks that are associated with unbroken gauge symmetry SU(3)c×U(1)em can be represented using the algebra of the complexified sedenions 𝕊. Their reasoning follows that a primitive idempotent projector ρ+=1/2(1+ie15) — where e15 is chosen as an imaginary unit akin to e7 for 𝕆 in the Fano plane — that acts on the standard basis of the sedenions uniquely divides the algebra into three sets of split basis elements for 𝕆, whose adjoint left actions on themselves generate three copies of the Clifford algebra Cl(6) which in-turn contain minimal left ideals that describe a single generation of fermions with unbroken SU(3)c×U(1)em gauge symmetry. In particular, they note that tensor products between normed division algebras generate zero divisors akin to those inside 𝕊, where for 𝕆 the lack of alternativity and associativity does not affect the construction of minimal left ideals since their underlying split basis requires only two basis elements to be multiplied together, in-which associativity or alternativity are uninvolved. Still, these ideals constructed from an adjoint algebra of left actions of the algebra on itself remain associative, alternative, and isomorphic to a Clifford algebra. Altogether, this permits three copies of (𝕆)LCl(6) to exist inside (𝕊)L. Furthermore, these three complexified octonion subalgebras are not independent; they share a common Cl(2) subalgebra, which the authors note could form a theoretical basis for CKM and PMNS matrices that, respectively, describe quark mixing and neutrino oscillations. Sedenion neural networks provide[further explanation needed] a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.[4][5]

See also

Notes

  1. "Ensembles de nombre" (PDF) (in français). Forum Futura-Science. 6 September 2011. Retrieved 11 October 2024.
  2. Raoul E. Cawagas, et al. (2009). "THE BASIC SUBALGEBRA STRUCTURE OF THE CAYLEY-DICKSON ALGEBRA OF DIMENSION 32 (TRIGINTADUONIONS)".
  3. (Baez 2002, p. 6)
  4. Saoud, Lyes Saad; Al-Marzouqi, Hasan (2020). "Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm". IEEE Access. 8: 144823–144838. doi:10.1109/ACCESS.2020.3014690. ISSN 2169-3536.
  5. Kopp, Michael; Kreil, David; Neun, Moritz; Jonietz, David; Martin, Henry; Herruzo, Pedro; Gruca, Aleksandra; Soleymani, Ali; Wu, Fanyou; Liu, Yang; Xu, Jingwei (2021-08-07). "Traffic4cast at NeurIPS 2020 – yet more on the unreasonable effectiveness of gridded geo-spatial processes". NeurIPS 2020 Competition and Demonstration Track. PMLR: 325–343.

References