Pfister's sixteen-square identity

From The Right Wiki
Jump to navigationJump to search

In algebra, Pfister's sixteen-square identity is a non-bilinear identity of form (x12+x22+x32++x162)(y12+y22+y32++y162)=z12+z22+z32++z162 It was first proven to exist by H. Zassenhaus and W. Eichhorn in the 1960s,[1] and independently by Albrecht Pfister[2] around the same time. There are several versions, a concise one of which is z1=x1y1x2y2x3y3x4y4x5y5x6y6x7y7x8y8+u1y9u2y10u3y11u4y12u5y13u6y14u7y15u8y16z2=x2y1+x1y2+x4y3x3y4+x6y5x5y6x8y7+x7y8+u2y9+u1y10+u4y11u3y12+u6y13u5y14u8y15+u7y16z3=x3y1x4y2+x1y3+x2y4+x7y5+x8y6x5y7x6y8+u3y9u4y10+u1y11+u2y12+u7y13+u8y14u5y15u6y16z4=x4y1+x3y2x2y3+x1y4+x8y5x7y6+x6y7x5y8+u4y9+u3y10u2y11+u1y12+u8y13u7y14+u6y15u5y16z5=x5y1x6y2x7y3x8y4+x1y5+x2y6+x3y7+x4y8+u5y9u6y10u7y11u8y12+u1y13+u2y14+u3y15+u4y16z6=x6y1+x5y2x8y3+x7y4x2y5+x1y6x4y7+x3y8+u6y9+u5y10u8y11+u7y12u2y13+u1y14u4y15+u3y16z7=x7y1+x8y2+x5y3x6y4x3y5+x4y6+x1y7x2y8+u7y9+u8y10+u5y11u6y12u3y13+u4y14+u1y15u2y16z8=x8y1x7y2+x6y3+x5y4x4y5x3y6+x2y7+x1y8+u8y9u7y10+u6y11+u5y12u4y13u3y14+u2y15+u1y16z9=x9y1x10y2x11y3x12y4x13y5x14y6x15y7x16y8+x1y9x2y10x3y11x4y12x5y13x6y14x7y15x8y16z10=x10y1+x9y2+x12y3x11y4+x14y5x13y6x16y7+x15y8+x2y9+x1y10+x4y11x3y12+x6y13x5y14x8y15+x7y16z11=x11y1x12y2+x9y3+x10y4+x15y5+x16y6x13y7x14y8+x3y9x4y10+x1y11+x2y12+x7y13+x8y14x5y15x6y16z12=x12y1+x11y2x10y3+x9y4+x16y5x15y6+x14y7x13y8+x4y9+x3y10x2y11+x1y12+x8y13x7y14+x6y15x5y16z13=x13y1x14y2x15y3x16y4+x9y5+x10y6+x11y7+x12y8+x5y9x6y10x7y11x8y12+x1y13+x2y14+x3y15+x4y16z14=x14y1+x13y2x16y3+x15y4x10y5+x9y6x12y7+x11y8+x6y9+x5y10x8y11+x7y12x2y13+x1y14x4y15+x3y16z15=x15y1+x16y2+x13y3x14y4x11y5+x12y6+x9y7x10y8+x7y9+x8y10+x5y11x6y12x3y13+x4y14+x1y15x2y16z16=x16y1x15y2+x14y3+x13y4x12y5x11y6+x10y7+x9y8+x8y9x7y10+x6y11+x5y12x4y13x3y14+x2y15+x1y16 If all xi and yi with i>8 are set equal to zero, then it reduces to Degen's eight-square identity (in blue). The ui are u1=(ax12+x22+x32+x42+x52+x62+x72+x82)x92x1(bx1x9+x2x10+x3x11+x4x12+x5x13+x6x14+x7x15+x8x16)cu2=(x12+ax22+x32+x42+x52+x62+x72+x82)x102x2(x1x9+bx2x10+x3x11+x4x12+x5x13+x6x14+x7x15+x8x16)cu3=(x12+x22+ax32+x42+x52+x62+x72+x82)x112x3(x1x9+x2x10+bx3x11+x4x12+x5x13+x6x14+x7x15+x8x16)cu4=(x12+x22+x32+ax42+x52+x62+x72+x82)x122x4(x1x9+x2x10+x3x11+bx4x12+x5x13+x6x14+x7x15+x8x16)cu5=(x12+x22+x32+x42+ax52+x62+x72+x82)x132x5(x1x9+x2x10+x3x11+x4x12+bx5x13+x6x14+x7x15+x8x16)cu6=(x12+x22+x32+x42+x52+ax62+x72+x82)x142x6(x1x9+x2x10+x3x11+x4x12+x5x13+bx6x14+x7x15+x8x16)cu7=(x12+x22+x32+x42+x52+x62+ax72+x82)x152x7(x1x9+x2x10+x3x11+x4x12+x5x13+x6x14+bx7x15+x8x16)cu8=(x12+x22+x32+x42+x52+x62+x72+ax82)x162x8(x1x9+x2x10+x3x11+x4x12+x5x13+x6x14+x7x15+bx8x16)c and, a=1,b=0,c=x12+x22+x32+x42+x52+x62+x72+x82. The identity shows that, in general, the product of two sums of sixteen squares is the sum of sixteen rational squares. Incidentally, the ui also obey, u12+u22+u32+u42+u52+u62+u72+u82=x92+x102+x112+x122+x132+x142+x152+x162 No sixteen-square identity exists involving only bilinear functions since Hurwitz's theorem states an identity of the form (x12+x22+x32++xn2)(y12+y22+y32++yn2)=z12+z22+z32++zn2 with the zi bilinear functions of the xi and yi is possible only for n ∈ {1, 2, 4, 8} . However, the more general Pfister's theorem (1965) shows that if the zi are rational functions of one set of variables, hence has a denominator, then it is possible for all n=2m.[3] There are also non-bilinear versions of Euler's four-square and Degen's eight-square identities.

See also

References

  1. H. Zassenhaus and W. Eichhorn, "Herleitung von Acht- und Sechzehn-Quadrate-Identitäten mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und der Cayley-Dicksonchen Zahlen," Arch. Math. 17 (1966), 492-496
  2. A. Pfister, Zur Darstellung von -1 als Summe von Quadraten in einem Körper," J. London Math. Soc. 40 (1965), 159-165
  3. Pfister's Theorem on Sums of Squares, Keith Conrad, http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/pfister.pdf

External links