Selberg sieve

From The Right Wiki
Jump to navigationJump to search
File:Atle Selberg.jpg
Atle Selberg

In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s.

Description

In terms of sieve theory the Selberg sieve is of combinatorial type: that is, derives from a careful use of the inclusion–exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an upper bound for the size of the sifted set. Let A be a set of positive integers x and let P be a set of primes. Let Ad denote the set of elements of A divisible by d when d is a product of distinct primes from P. Further let A1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are z. The object of the sieve is to estimate

S(A,P,z)=|ApP(z)Ap|.

We assume that |Ad| may be estimated by

|Ad|=1f(d)X+Rd.

where f is a multiplicative function and X   =   |A|. Let the function g be obtained from f by Möbius inversion, that is

g(n)=dnμ(d)f(n/d)
f(n)=dng(d)

where μ is the Möbius function. Put

V(z)=d<zdP(z)1g(d).

Then

S(A,P,z)XV(z)+O(d1,d2<zd1,d2P(z)|R[d1,d2]|)

where [d1,d2] denotes the least common multiple of d1 and d2. It is often useful to estimate V(z) by the bound

V(z)dz1f(d).

Applications

References

  • Cojocaru, Alina Carmen; Murty, M. Ram (2005). An introduction to sieve methods and their applications. London Mathematical Society Student Texts. Vol. 66. Cambridge University Press. pp. 113–134. ISBN 0-521-61275-6. Zbl 1121.11063.
  • Diamond, Harold G.; Halberstam, Heini (2008). A Higher-Dimensional Sieve Method: with Procedures for Computing Sieve Functions. Cambridge Tracts in Mathematics. Vol. 177. With William F. Galway. Cambridge: Cambridge University Press. ISBN 978-0-521-89487-6. Zbl 1207.11099.
  • Greaves, George (2001). Sieves in number theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 43. Berlin: Springer-Verlag. ISBN 3-540-41647-1. Zbl 1003.11044.
  • Halberstam, Heini; Richert, H.E. (1974). Sieve Methods. London Mathematical Society Monographs. Vol. 4. Academic Press. ISBN 0-12-318250-6. Zbl 0298.10026.
  • Hooley, Christopher (1976). Applications of sieve methods to the theory of numbers. Cambridge Tracts in Mathematics. Vol. 70. Cambridge University Press. pp. 7–12. ISBN 0-521-20915-3. Zbl 0327.10044.
  • Selberg, Atle (1947). "On an elementary method in the theory of primes". Norske Vid. Selsk. Forh. Trondheim. 19: 64–67. ISSN 0368-6302. Zbl 0041.01903.