Sigma-martingale

From The Right Wiki
Jump to navigationJump to search

In mathematics and information theory of probability, a sigma-martingale is a semimartingale with an integral representation. Sigma-martingales were introduced by C.S. Chou and M. Emery in 1977 and 1978.[1] In financial mathematics, sigma-martingales appear in the fundamental theorem of asset pricing as an equivalent condition to no free lunch with vanishing risk (a no-arbitrage condition).[2]

Mathematical definition

An d-valued stochastic process X=(Xt)t=0T is a sigma-martingale if it is a semimartingale and there exists an d-valued martingale M and an M-integrable predictable process ϕ with values in + such that

X=ϕM.[1]

References

  1. 1.0 1.1 F. Delbaen; W. Schachermayer (1998). "The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes" (PDF). Mathematische Annalen. 312 (2): 215–250. doi:10.1007/s002080050220. S2CID 18366067. Retrieved October 14, 2011.
  2. Delbaen, Freddy; Schachermayer, Walter. "What is... a Free Lunch?" (PDF). Notices of the AMS. 51 (5): 526–528. Retrieved October 14, 2011.