Signature defect
From The Right Wiki
Jump to navigationJump to search
In mathematics, the signature defect of a singularity measures the correction that a singularity contributes to the signature theorem. Hirzebruch (1973) introduced the signature defect for the cusp singularities of Hilbert modular surfaces. Michael Francis Atiyah, H. Donnelly, and I. M. Singer (1983) defined the signature defect of the boundary of a manifold as the eta invariant, the value as s = 0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s = 0 or 1 of a Shimizu L-function.
References
- Atiyah, Michael Francis; Donnelly, H.; Singer, I. M. (1983), "Eta invariants, signature defects of cusps, and values of L-functions", Annals of Mathematics, Second Series, 118 (1): 131–177, doi:10.2307/2006957, ISSN 0003-486X, JSTOR 2006957, MR 0707164
- Hirzebruch, Friedrich E. P. (1973), "Hilbert modular surfaces", L'Enseignement Mathématique, 2e Série, 19: 183–281, doi:10.5169/seals-46292, ISSN 0013-8584, MR 0393045