Burr distribution

From The Right Wiki
Jump to navigationJump to search
Burr Type XII
Probability density function
File:Burr pdf.svg
Cumulative distribution function
File:Burr cdf.svg
Parameters c>0
k>0
Support x>0
PDF ckxc1(1+xc)k+1
CDF 1(1+xc)k
Quantile λ(1(1U)1k1)1c
Mean μ1=kB(k1/c,1+1/c) where Β() is the beta function
Median (21k1)1c
Mode (c1kc+1)1c
Variance μ12+μ2
Skewness 2μ133μ1μ2+μ3(μ12+μ2)3/2
Excess kurtosis 3μ14+6μ12μ24μ1μ3+μ4(μ12+μ2)23 where moments (see) μr=kB(ckrc,c+rc)
CF =c(it)kcΓ(k)H1,22,1[(it)c|(k,1)(0,1),(kc,c)],t0
=1,t=0
where Γ is the Gamma function and H is the Fox H-function.[1]

In probability theory, statistics and econometrics, the Burr Type XII distribution or simply the Burr distribution[2] is a continuous probability distribution for a non-negative random variable. It is also known as the Singh–Maddala distribution[3] and is one of a number of different distributions sometimes called the "generalized log-logistic distribution".

Definitions

Probability density function

The Burr (Type XII) distribution has probability density function:[4][5]

f(x;c,k)=ckxc1(1+xc)k+1f(x;c,k,λ)=ckλ(xλ)c1[1+(xλ)c]k1

The λ parameter scales the underlying variate and is a positive real.

Cumulative distribution function

The cumulative distribution function is:

F(x;c,k)=1(1+xc)k
F(x;c,k,λ)=1[1+(xλ)c]k

Applications

It is most commonly used to model household income, see for example: Household income in the U.S. and compare to magenta graph at right.

Random variate generation

Given a random variable U drawn from the uniform distribution in the interval (0,1), the random variable

X=λ(11Uk1)1/c

has a Burr Type XII distribution with parameters c, k and λ. This follows from the inverse cumulative distribution function given above.

Related distributions

References

  1. Nadarajah, S.; Pogány, T. K.; Saxena, R. K. (2012). "On the characteristic function for Burr distributions". Statistics. 46 (3): 419–428. doi:10.1080/02331888.2010.513442. S2CID 120848446.
  2. Burr, I. W. (1942). "Cumulative frequency functions". Annals of Mathematical Statistics. 13 (2): 215–232. doi:10.1214/aoms/1177731607. JSTOR 2235756.
  3. Singh, S.; Maddala, G. (1976). "A Function for the Size Distribution of Incomes". Econometrica. 44 (5): 963–970. doi:10.2307/1911538. JSTOR 1911538.
  4. Maddala, G. S. (1996) [1983]. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press. ISBN 0-521-33825-5.
  5. Tadikamalla, Pandu R. (1980), "A Look at the Burr and Related Distributions", International Statistical Review, 48 (3): 337–344, doi:10.2307/1402945, JSTOR 1402945
  6. C. Kleiber and S. Kotz (2003). Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley. See Sections 7.3 "Champernowne Distribution" and 6.4.1 "Fisk Distribution."
  7. Champernowne, D. G. (1952). "The graduation of income distributions". Econometrica. 20 (4): 591–614. doi:10.2307/1907644. JSTOR 1907644.
  8. See Kleiber and Kotz (2003), Table 2.4, p. 51, "The Burr Distributions."

Further reading

External links