Table of spherical harmonics

From The Right Wiki
Jump to navigationJump to search

This is a table of orthonormalized spherical harmonics that employ the Condon-Shortley phase up to degree =10. Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in x, y, z, and r. For purposes of this table, it is useful to express the usual spherical to Cartesian transformations that relate these Cartesian components to θ and φ as {cos(θ)=z/re±iφsin(θ)=(x±iy)/r

Complex spherical harmonics

For = 0, …, 5, see.[1]

= 0

Y00(θ,φ)=121π

= 1

Y11(θ,φ)=1232πeiφsinθ=1232π(xiy)rY10(θ,φ)=123πcosθ=123πzrY11(θ,φ)=1232πeiφsinθ=1232π(x+iy)r

= 2

Y22(θ,φ)=14152πe2iφsin2θ=14152π(xiy)2r2Y21(θ,φ)=12152πeiφsinθcosθ=12152π(xiy)zr2Y20(θ,φ)=145π(3cos2θ1)=145π(3z2r2)r2Y21(θ,φ)=12152πeiφsinθcosθ=12152π(x+iy)zr2Y22(θ,φ)=14152πe2iφsin2θ=14152π(x+iy)2r2

= 3

Y33(θ,φ)=1835πe3iφsin3θ=1835π(xiy)3r3Y32(θ,φ)=141052πe2iφsin2θcosθ=141052π(xiy)2zr3Y31(θ,φ)=1821πeiφsinθ(5cos2θ1)=1821π(xiy)(5z2r2)r3Y30(θ,φ)=147π(5cos3θ3cosθ)=147π(5z33zr2)r3Y31(θ,φ)=1821πeiφsinθ(5cos2θ1)=1821π(x+iy)(5z2r2)r3Y32(θ,φ)=141052πe2iφsin2θcosθ=141052π(x+iy)2zr3Y33(θ,φ)=1835πe3iφsin3θ=1835π(x+iy)3r3

= 4

Y44(θ,φ)=316352πe4iφsin4θ=316352π(xiy)4r4Y43(θ,φ)=3835πe3iφsin3θcosθ=3835π(xiy)3zr4Y42(θ,φ)=3852πe2iφsin2θ(7cos2θ1)=3852π(xiy)2(7z2r2)r4Y41(θ,φ)=385πeiφsinθ(7cos3θ3cosθ)=385π(xiy)(7z33zr2)r4Y40(θ,φ)=3161π(35cos4θ30cos2θ+3)=3161π(35z430z2r2+3r4)r4Y41(θ,φ)=385πeiφsinθ(7cos3θ3cosθ)=385π(x+iy)(7z33zr2)r4Y42(θ,φ)=3852πe2iφsin2θ(7cos2θ1)=3852π(x+iy)2(7z2r2)r4Y43(θ,φ)=3835πe3iφsin3θcosθ=3835π(x+iy)3zr4Y44(θ,φ)=316352πe4iφsin4θ=316352π(x+iy)4r4

= 5

Y55(θ,φ)=33277πe5iφsin5θY54(θ,φ)=3163852πe4iφsin4θcosθY53(θ,φ)=132385πe3iφsin3θ(9cos2θ1)Y52(θ,φ)=1811552πe2iφsin2θ(3cos3θcosθ)Y51(θ,φ)=1161652πeiφsinθ(21cos4θ14cos2θ+1)Y50(θ,φ)=11611π(63cos5θ70cos3θ+15cosθ)Y51(θ,φ)=1161652πeiφsinθ(21cos4θ14cos2θ+1)Y52(θ,φ)=1811552πe2iφsin2θ(3cos3θcosθ)Y53(θ,φ)=132385πe3iφsin3θ(9cos2θ1)Y54(θ,φ)=3163852πe4iφsin4θcosθY55(θ,φ)=33277πe5iφsin5θ

= 6

Y66(θ,φ)=1643003πe6iφsin6θY65(θ,φ)=3321001πe5iφsin5θcosθY64(θ,φ)=332912πe4iφsin4θ(11cos2θ1)Y63(θ,φ)=1321365πe3iφsin3θ(11cos3θ3cosθ)Y62(θ,φ)=1641365πe2iφsin2θ(33cos4θ18cos2θ+1)Y61(θ,φ)=1162732πeiφsinθ(33cos5θ30cos3θ+5cosθ)Y60(θ,φ)=13213π(231cos6θ315cos4θ+105cos2θ5)Y61(θ,φ)=1162732πeiφsinθ(33cos5θ30cos3θ+5cosθ)Y62(θ,φ)=1641365πe2iφsin2θ(33cos4θ18cos2θ+1)Y63(θ,φ)=1321365πe3iφsin3θ(11cos3θ3cosθ)Y64(θ,φ)=332912πe4iφsin4θ(11cos2θ1)Y65(θ,φ)=3321001πe5iφsin5θcosθY66(θ,φ)=1643003πe6iφsin6θ

= 7

Y77(θ,φ)=3647152πe7iφsin7θY76(θ,φ)=3645005πe6iφsin6θcosθY75(θ,φ)=3643852πe5iφsin5θ(13cos2θ1)Y74(θ,φ)=3323852πe4iφsin4θ(13cos3θ3cosθ)Y73(θ,φ)=364352πe3iφsin3θ(143cos4θ66cos2θ+3)Y72(θ,φ)=36435πe2iφsin2θ(143cos5θ110cos3θ+15cosθ)Y71(θ,φ)=1641052πeiφsinθ(429cos6θ495cos4θ+135cos2θ5)Y70(θ,φ)=13215π(429cos7θ693cos5θ+315cos3θ35cosθ)Y71(θ,φ)=1641052πeiφsinθ(429cos6θ495cos4θ+135cos2θ5)Y72(θ,φ)=36435πe2iφsin2θ(143cos5θ110cos3θ+15cosθ)Y73(θ,φ)=364352πe3iφsin3θ(143cos4θ66cos2θ+3)Y74(θ,φ)=3323852πe4iφsin4θ(13cos3θ3cosθ)Y75(θ,φ)=3643852πe5iφsin5θ(13cos2θ1)Y76(θ,φ)=3645005πe6iφsin6θcosθY77(θ,φ)=3647152πe7iφsin7θ

= 8

Y88(θ,φ)=3256121552πe8iφsin8θY87(θ,φ)=364121552πe7iφsin7θcosθY86(θ,φ)=11287293πe6iφsin6θ(15cos2θ1)Y85(θ,φ)=364170172πe5iφsin5θ(5cos3θcosθ)Y84(θ,φ)=312813092πe4iφsin4θ(65cos4θ26cos2θ+1)Y83(θ,φ)=164196352πe3iφsin3θ(39cos5θ26cos3θ+3cosθ)Y82(θ,φ)=3128595πe2iφsin2θ(143cos6θ143cos4θ+33cos2θ1)Y81(θ,φ)=364172πeiφsinθ(715cos7θ1001cos5θ+385cos3θ35cosθ)Y80(θ,φ)=125617π(6435cos8θ12012cos6θ+6930cos4θ1260cos2θ+35)Y81(θ,φ)=364172πeiφsinθ(715cos7θ1001cos5θ+385cos3θ35cosθ)Y82(θ,φ)=3128595πe2iφsin2θ(143cos6θ143cos4θ+33cos2θ1)Y83(θ,φ)=164196352πe3iφsin3θ(39cos5θ26cos3θ+3cosθ)Y84(θ,φ)=312813092πe4iφsin4θ(65cos4θ26cos2θ+1)Y85(θ,φ)=364170172πe5iφsin5θ(5cos3θcosθ)Y86(θ,φ)=11287293πe6iφsin6θ(15cos2θ1)Y87(θ,φ)=364121552πe7iφsin7θcosθY88(θ,φ)=3256121552πe8iφsin8θ

= 9

Y99(θ,φ)=1512230945πe9iφsin9θY98(θ,φ)=32562309452πe8iφsin8θcosθY97(θ,φ)=351213585πe7iφsin7θ(17cos2θ1)Y96(θ,φ)=112840755πe6iφsin6θ(17cos3θ3cosθ)Y95(θ,φ)=32562717πe5iφsin5θ(85cos4θ30cos2θ+1)Y94(θ,φ)=3128950952πe4iφsin4θ(17cos5θ10cos3θ+cosθ)Y93(θ,φ)=125621945πe3iφsin3θ(221cos6θ195cos4θ+39cos2θ1)Y92(θ,φ)=31281045πe2iφsin2θ(221cos7θ273cos5θ+91cos3θ7cosθ)Y91(θ,φ)=3256952πeiφsinθ(2431cos8θ4004cos6θ+2002cos4θ308cos2θ+7)Y90(θ,φ)=125619π(12155cos9θ25740cos7θ+18018cos5θ4620cos3θ+315cosθ)Y91(θ,φ)=3256952πeiφsinθ(2431cos8θ4004cos6θ+2002cos4θ308cos2θ+7)Y92(θ,φ)=31281045πe2iφsin2θ(221cos7θ273cos5θ+91cos3θ7cosθ)Y93(θ,φ)=125621945πe3iφsin3θ(221cos6θ195cos4θ+39cos2θ1)Y94(θ,φ)=3128950952πe4iφsin4θ(17cos5θ10cos3θ+cosθ)Y95(θ,φ)=32562717πe5iφsin5θ(85cos4θ30cos2θ+1)Y96(θ,φ)=112840755πe6iφsin6θ(17cos3θ3cosθ)Y97(θ,φ)=351213585πe7iφsin7θ(17cos2θ1)Y98(θ,φ)=32562309452πe8iφsin8θcosθY99(θ,φ)=1512230945πe9iφsin9θ

= 10

Y1010(θ,φ)=11024969969πe10iφsin10θY109(θ,φ)=15124849845πe9iφsin9θcosθY108(θ,φ)=15122552552πe8iφsin8θ(19cos2θ1)Y107(θ,φ)=351285085πe7iφsin7θ(19cos3θ3cosθ)Y106(θ,φ)=310245005πe6iφsin6θ(323cos4θ102cos2θ+3)Y105(θ,φ)=32561001πe5iφsin5θ(323cos5θ170cos3θ+15cosθ)Y104(θ,φ)=325650052πe4iφsin4θ(323cos6θ255cos4θ+45cos2θ1)Y103(θ,φ)=32565005πe3iφsin3θ(323cos7θ357cos5θ+105cos3θ7cosθ)Y102(θ,φ)=35123852πe2iφsin2θ(4199cos8θ6188cos6θ+2730cos4θ364cos2θ+7)Y101(θ,φ)=125611552πeiφsinθ(4199cos9θ7956cos7θ+4914cos5θ1092cos3θ+63cosθ)Y100(θ,φ)=151221π(46189cos10θ109395cos8θ+90090cos6θ30030cos4θ+3465cos2θ63)Y101(θ,φ)=125611552πeiφsinθ(4199cos9θ7956cos7θ+4914cos5θ1092cos3θ+63cosθ)Y102(θ,φ)=35123852πe2iφsin2θ(4199cos8θ6188cos6θ+2730cos4θ364cos2θ+7)Y103(θ,φ)=32565005πe3iφsin3θ(323cos7θ357cos5θ+105cos3θ7cosθ)Y104(θ,φ)=325650052πe4iφsin4θ(323cos6θ255cos4θ+45cos2θ1)Y105(θ,φ)=32561001πe5iφsin5θ(323cos5θ170cos3θ+15cosθ)Y106(θ,φ)=310245005πe6iφsin6θ(323cos4θ102cos2θ+3)Y107(θ,φ)=351285085πe7iφsin7θ(19cos3θ3cosθ)Y108(θ,φ)=15122552552πe8iφsin8θ(19cos2θ1)Y109(θ,φ)=15124849845πe9iφsin9θcosθY1010(θ,φ)=11024969969πe10iφsin10θ

Visualization of complex spherical harmonics

2D polar/azimuthal angle maps

Below the complex spherical harmonics are represented on 2D plots with the azimuthal angle, ϕ, on the horizontal axis and the polar angle, θ, on the vertical axis. The saturation of the color at any point represents the magnitude of the spherical harmonic and the hue represents the phase. The nodal 'line of latitude' are visible as horizontal white lines. The nodal 'line of longitude' are visible as vertical white lines.

File:Complex Spherical Harmonics Figure Table Complex 2D.png
Visual Array of Complex Spherical Harmonics Represented as 2D Theta/Phi Maps

Polar plots

Below the complex spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the saturation of the color at that point and the phase is represented by the hue at that point.

File:Complex Spherical Harmonics Figure Table Complex Polar Plot.gif
Visual Array of Complex Spherical Harmonics Represented with Polar Plot

Polar plots with magnitude as radius

Below the complex spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the radius of the plot at that point and the phase is represented by the hue at that point.

File:Complex Spherical Harmonics Figure Table Complex Radial Magnitude.gif
Visual Array of Complex Spherical Harmonics Represented with Polar Plot with Magnitude Mapped to Radius

Real spherical harmonics

For each real spherical harmonic, the corresponding atomic orbital symbol (s, p, d, f) is reported as well.[2][3] For = 0, …, 3, see.[4][5]

= 0

Y00=s=Y00=121π

= 1

Y1,1=py=i12(Y11+Y11)=34πyr=34πsin(θ)sinφY1,0=pz=Y10=34πzr=34πcos(θ)Y1,1=px=12(Y11Y11)=34πxr=34πsin(θ)cosφ

= 2

Y2,2=dxy=i12(Y22Y22)=1215πxyr2=1415πsin2θsin(2φ)Y2,1=dyz=i12(Y21+Y21)=1215πyzr2=1415πsin(2θ)sinφY2,0=dz2=Y20=145π3z2r2r2=145π(3cos2θ1)Y2,1=dxz=12(Y21Y21)=1215πxzr2=1415πsin(2θ)cosφY2,2=dx2y2=12(Y22+Y22)=1415πx2y2r2=1415πsin2θcos(2φ)

= 3

Y3,3=fy(3x2y2)=i12(Y33+Y33)=14352πy(3x2y2)r3Y3,2=fxyz=i12(Y32Y32)=12105πxyzr3Y3,1=fyz2=i12(Y31+Y31)=14212πy(5z2r2)r3Y3,0=fz3=Y30=147π5z33zr2r3Y3,1=fxz2=12(Y31Y31)=14212πx(5z2r2)r3Y3,2=fz(x2y2)=12(Y32+Y32)=14105π(x2y2)zr3Y3,3=fx(x23y2)=12(Y33Y33)=14352πx(x23y2)r3

= 4

Y4,4=i12(Y44Y44)=3435πxy(x2y2)r4Y4,3=i12(Y43+Y43)=34352πy(3x2y2)zr4Y4,2=i12(Y42Y42)=345πxy(7z2r2)r4Y4,1=i12(Y41+Y41)=3452πy(7z33zr2)r4Y4,0=Y40=3161π35z430z2r2+3r4r4Y4,1=12(Y41Y41)=3452πx(7z33zr2)r4Y4,2=12(Y42+Y42)=385π(x2y2)(7z2r2)r4Y4,3=12(Y43Y43)=34352πx(x23y2)zr4Y4,4=12(Y44+Y44)=31635πx2(x23y2)y2(3x2y2)r4

Visualization of real spherical harmonics

2D polar/azimuthal angle maps

Below the real spherical harmonics are represented on 2D plots with the azimuthal angle, ϕ, on the horizontal axis and the polar angle, θ, on the vertical axis. The saturation of the color at any point represents the magnitude of the spherical harmonic. Positive values are red and negative values are teal. The nodal 'line of latitude' are visible as horizontal white lines. The nodal 'line of longitude' are visible as vertical white lines.

File:Real Spherical Harmonics Figure Table Complex 2D.png
Visual Array of Real Spherical Harmonics Represented as 2D Theta/Phi Maps

Polar plots

Below the real spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the saturation of the color at that point and the phase is represented by the hue at that point.

File:Real Spherical Harmonics Figure Table Complex Polar Plot.gif
Visual Array of Real Spherical Harmonics Represented with Polar Plot

Polar plots with magnitude as radius

Below the real spherical harmonics are represented on polar plots. The magnitude of the spherical harmonic at particular polar and azimuthal angles is represented by the radius of the plot at that point and the phase is represented by the hue at that point.

File:Real Spherical Harmonics Figure Table Complex Radial Magnitude.gif
Visual Array of Real Spherical Harmonics Represented with Polar Plot with Magnitude Mapped to Radius

Polar plots with amplitude as elevation

Below the real spherical harmonics are represented on polar plots. The amplitude of the spherical harmonic (magnitude and sign) at a particular polar and azimuthal angle is represented by the elevation of the plot at that point above or below the surface of a uniform sphere. The magnitude is also represented by the saturation of the color at a given point. The phase is represented by the hue at a given point.

File:Sph harm table real bumpy.gif
Visual Array of Real Spherical Harmonics Represented with Polar Plot with Amplitude Mapped to Elevation and Saturation

See also

External links

References

Cited references

  1. D. A. Varshalovich; A. N. Moskalev; V. K. Khersonskii (1988). Quantum theory of angular momentum : irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols (1. repr. ed.). Singapore: World Scientific Pub. pp. 155–156. ISBN 9971-50-107-4.
  2. Petrucci (2016). General chemistry : principles and modern applications. Prentice Hall. ISBN 0133897311.
  3. Friedman (1964). "The shapes of the f orbitals". J. Chem. Educ. 41 (7): 354.
  4. C.D.H. Chisholm (1976). Group theoretical techniques in quantum chemistry. New York: Academic Press. ISBN 0-12-172950-8.
  5. Blanco, Miguel A.; Flórez, M.; Bermejo, M. (1 December 1997). "Evaluation of the rotation matrices in the basis of real spherical harmonics". Journal of Molecular Structure: THEOCHEM. 419 (1–3): 19–27. doi:10.1016/S0166-1280(97)00185-1.

General references