Taylor scraping flow

From The Right Wiki
Jump to navigationJump to search

In fluid dynamics, Taylor scraping flow is a type of two-dimensional corner flow occurring when one of the wall is sliding over the other with constant velocity, named after G. I. Taylor.[1][2][3]

Flow description

Consider a plane wall located at θ=0 in the cylindrical coordinates (r,θ), moving with a constant velocity U towards the left. Consider another plane wall(scraper), at an inclined position, making an angle α from the positive x direction and let the point of intersection be at r=0. This description is equivalent to moving the scraper towards right with velocity U. The problem is singular at r=0 because at the origin, the velocities are discontinuous, thus the velocity gradient is infinite there. Taylor noticed that the inertial terms are negligible as long as the region of interest is within rν/U( or, equivalently Reynolds number Re=Ur/ν1), thus within the region the flow is essentially a Stokes flow. For example, George Batchelor gives a typical value for lubricating oil with velocity U=10 cm/s as r0.4 cm.[4] Then for two-dimensional planar problem, the equation is

4ψ=0,ur=1rψθ,uθ=ψr

where v=(ur,uθ) is the velocity field and ψ is the stream function. The boundary conditions are

r>0,θ=0:ur=U,uθ=0r>0,θ=α:ur=0,uθ=0

Solution

Attempting a separable solution of the form ψ=Urf(θ) reduces the problem to

fiv+2f+f=0

with boundary conditions

f(0)=0,f(0)=1,f(α)=0,f(α)=0

The solution is[5]

f(θ)=1α2sin2α[θsinαsin(αθ)α(αθ)sinθ]

Therefore, the velocity field is

ur=Uα2sin2α{sinα[sin(αθ)θcos(αθ)]+α[sinθ(αθ)cosθ]}uθ=Uα2sin2α[θsinαsin(αθ)α(αθ)sinθ]

Pressure can be obtained through integration of the momentum equation

p=μ2v,p(r,)=p

which gives,

p(r,θ)p=2μUrαsinθ+sinαsin(αθ)α2sin2α

Stresses on the scraper

File:Taylor.svg
Stresses on the scraper

The tangential stress and the normal stress on the scraper due to pressure and viscous forces are

σt=2μUrsinααcosαα2sin2α,σn=2μUrαsinαα2sin2α

The same scraper stress if resolved according to Cartesian coordinates (parallel and perpendicular to the lower plate i.e. σx=σtcosα+σnsinα,σy=σtsinα+σncosα) are

σx=2μUrαsinαcosαα2sin2α,σy=2μUrsin2αα2sin2α

As noted earlier, all the stresses become infinite at r=0, because the velocity gradient is infinite there. In real life, there will be a huge pressure at the point, which depends on the geometry of the contact. The stresses are shown in the figure as given in the Taylor's original paper. The stress in the direction parallel to the lower wall decreases as α increases, and reaches its minimum value σx=2μU/r at α=π. Taylor says: "The most interesting and perhaps unexpected feature of the calculations is that σy does not change sign in the range 0<α<π. In the range π/2<α<π the contribution to σy due to normal stress is of opposite sign to that due to tangential stress, but the latter is the greater. The palette knives used by artists for removing paint from their palettes are very flexible scrapers. They can therefore only be used at such an angle that σn is small and as will be seen in the figure this occurs only when α is nearly 180. In fact artists instinctively hold their palette knives in this position." Further he adds "A plasterer on the other hand holds a smoothing tool so that α is small. In that way he can get the large values of σy/σx which are needed in forcing plaster from protuberances to hollows."

Scraping a power-law fluid

Since scraping applications are important for non-Newtonian fluid (for example, scraping paint, nail polish, cream, butter, honey, etc.,), it is essential to consider this case. The analysis was carried out by J. Riedler and Wilhelm Schneider in 1983 and they were able to obtain self-similar solutions for power-law fluids satisfying the relation for the apparent viscosity[6]

μ=mz{4[r(1rψθ)]2+[1r22ψθ2rr(1rr)]2}(n1)/2

where mz and n are constants. The solution for the streamfunction of the flow created by the plate moving towards right is given by

ψ=Ur{[1𝒥1(θ)𝒥1(α)]sinθ+𝒥2(θ)𝒥1(α)cosθ}

where

𝒥1=sgn(F)0θ|F|1/ncosxdx,𝒥2=sgn(F)0θ|F|1/nsinxdx

and

F=sin(n(2n)xC)ifn<2,F=xCifn=2,F=sinh(n(n2)xC)ifn>2

where C is the root of 𝒥2(α)=0. It can be verified that this solution reduces to that of Taylor's for Newtonian fluids, i.e., when n=1.

References

  1. Taylor, G. I. (1960). "Similarity solutions of hydrodynamic problems". Aeronautics and Astronautics. 4: 214.
  2. Taylor, G. I. (1962). "On scraping viscous fluid from a plane surface". Miszellangen der Angewandten Mechanik. Festschrift Walter Tollmien. pp. 313–315.
  3. Taylor, G. I. (1958). Bachelor, G. K. (ed.). Scientific Papers. p. 467.
  4. Batchelor, George Keith (2000). An Introduction to Fluid Dynamics. Cambridge University Press. ISBN 0-521-66396-2.
  5. Acheson, David J. (1990). Elementary Fluid Dynamics. Oxford University Press. ISBN 0-19-859660-X.
  6. Riedler, J.; Schneider, W. (1983). "Viscous flow in corner regions with a moving wall and leakage of fluid". Acta Mechanica. 48 (1–2): 95–102. doi:10.1007/BF01178500. S2CID 119661999.