Tetrahydropyridine

From The Right Wiki
Jump to navigationJump to search
Tetrahydropyridine
File:Tetrahydropyridines.svg
Three isomers of tetrahydropyridine
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
EC Number
  • 2,3,4,6: 211-766-2
KEGG
UNII
UN number 2410
  • 2,3,4,5: InChI=1S/C5H9N/c1-2-4-6-5-3-1/h4H,1-3,5H2
    Key: DWKUKQRKVCMOLP-UHFFFAOYSA-N
  • 1,2,3,4: InChI=1S/C5H9N/c1-2-4-6-5-3-1/h2,4,6H,1,3,5H2
    Key: VSWICNJIUPRZIK-UHFFFAOYSA-N
  • 2,3,4,6: InChI=1S/C5H9N/c1-2-4-6-5-3-1/h1-2,6H,3-5H2
    Key: FTAHXMZRJCZXDL-UHFFFAOYSA-N
  • 2,3,4,5: C1CCN=CC1
  • 1,2,3,4: C1CC=CNC1
  • 2,3,4,6: C1CNCC=C1
Properties
C5H9N
Molar mass 83.134 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetrahydropyridines (or piperideines) are heterocycles with the formula C5H9N. Three isomers exist, which differ by the location of the double bond. None of the parent species occur widely, so they are mainly of theoretical interest. Although the parent tetrahydropyridines are rare, many substituted tetrahydropyridines are known.

Preparation and occurrence

File:MPTP.svg
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine causes permanent symptoms of Parkinson's disease.
File:(–)-Mitragynine Structural Formula V1.svg
(–)-Mitragynine is a naturally occurring tetrahydropyridine.

2,3,4,5-Tetrahydropyridine, a colorless liquid, is commercially available. It is an imine. Illustrating another isomer of tetrahydropyridine, 6-acetyl-2,3,4,5-tetrahydropyridine occurs naturally. Partial reduction of pyridinium salts gives N-alkyltetrahydropyridines. Treatment of N-methylpyridinium with borohydride reagents gives 1-methyl-1,2,3,6-tetrahydropyridine.[1][2]

A modified Ireland-Claisen rearrangement leads to tetrahydropyridines via a silyl ketene acetal intermediate.[3]

Ring-closing olefin metathesis has also been used to establish the tetrahydropyridine ring system.[4]

References

  1. Balasubramanian, Marudai (2013). "Formation of Completely or Partially Reduced Pyridines and Quinolines". Pyridines: From lab to production. pp. 413–458. doi:10.1016/B978-0-12-385235-9.00005-9. ISBN 9780123852359.
  2. Thyagarajan, G.; May, E. L. (1971). "Improved synthesis of 2-benzyl-1,2,5,6-tetrahydropyridines, precursors of analgetic 6,7-benzomorphans". J. Heterocycl. Chem. 8 (3): 465. doi:10.1002/jhet.5570080317.
  3. Angle, S. R.; Henry, R. M. (1998). "Studies toward the Synthesis of (+)-Palustrine: The First Asymmetric Synthesis of (−)-Methyl Palustramate". J. Org. Chem. 63 (21): 7490–7497. doi:10.1021/jo980749g. PMID 11672402.
  4. Deiters, A.; Martin, S. F. (2004). "Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis". Chem. Rev. 104 (5): 2199–238. doi:10.1021/cr0200872. PMID 15137789.