Unified strength theory

From The Right Wiki
Jump to navigationJump to search

The unified strength theory (UST).[1][2][3][4] proposed by Yu Mao-Hong is a series of yield criteria (see yield surface) and failure criteria (see Material failure theory). It is a generalized classical strength theory which can be used to describe the yielding or failure of material begins when the combination of principal stresses reaches a critical value.[5][6][7]

Mathematical formulation

Mathematically, the formulation of UST is expressed in principal stress state as

F=σ1α1+b(bσ2+σ3)=σt, when σ2σ1+ασ31+α
(1a)


F=11+b(σ1+bσ3)ασ3=σt, when σ2σ1+ασ31+α
(1b)


where σ1,σ2,σ3 are three principal stresses, σt is the uniaxial tensile strength and α is tension-compression strength ratio (α=σt/σc). The unified yield criterion (UYC) is the simplification of UST when α=1, i.e.

f=σ111+b(bσ2+σ3)=σs, when σ212(σ1+σ3)
(2a)


f=11+b(σ1+bσ2)σ3=σs, when σ212(σ1+σ3)
(2b)


Limit surfaces

The limit surfaces of the unified strength theory in principal stress space are usually a semi-infinite dodecahedron cone with unequal sides. The shape and size of the limiting dodecahedron cone depends on the parameter b and α. The limit surfaces of UST and UYC are shown as follows.

File:UST limit surface wikipedia.jpg
The limit surfaces of UST with α=0.6
File:UYC Plane.jpg
The limit surfaces of UYC

Derivation

Due to the relation (τ13=τ12+τ23), the principal stress state (σ1,σ2,σ3) may be converted to the twin-shear stress state (τ13,τ12;σ13,σ12) or (τ13,τ23;σ13,σ23). Twin-shear element models proposed by Mao-Hong Yu are used for representing the twin-shear stress state.[1] Considering all the stress components of the twin-shear models and their different effects yields the unified strength theory as

F=τ13+bτ12+β(σ13+bσ12)=C, when τ12+βσ12τ23+βσ23
(3a)


F=τ13+bτ23+β(σ13+bσ23)=C, when τ12+βσ12τ23+βσ23
(3b)


The relations among the stresses components and principal stresses read

τ13=12(σ1σ3), σ13=12(σ1+σ3)
(4a)


τ12=12(σ1σ2), σ12=12(σ1+σ2)
(4b)


τ23=12(σ2σ3), σ23=12(σ2+σ3)
(4c)


The β and C should be obtained by uniaxial failure state

σ1=σt,σ2=σ3=0
(5a)


σ1=σ2=0,σ3=σc
(5b)


By substituting Eqs.(4a), (4b) and (5a) into the Eq.(3a), and substituting Eqs.(4a), (4c) and (5b) into Eq.(3b), the β and C are introduced as

β=σcσtσc+σt=1α1+α, C=1+bσcσtσc+σt=1+b1+ασt
(6)


History

The development of the unified strength theory can be divided into three stages as follows.
1. Twin-shear yield criterion (UST with α=1 and b=1)[8][9]

f=σ112(σ2+σ3)=σt, when σ2σ1+σ32
(7a)


f=12(σ1+σ2)σ3=σt, when σ2σ1+σ32
(7b)


2. Twin-shear strength theory (UST with b=1)[10].

F=σ1α2(σ2+σ3)=σt, when σ2σ1+ασ31+α
(8a)


F=12(σ1+σ2) - ασ3=σt, when σ2σ1+ασ31+α
(8b)


3. Unified strength theory[1].

Applications

Unified strength theory has been used in Generalized Plasticity,[11] Structural Plasticity,[12] Computational Plasticity[13] and many other fields[14][15]

References

  1. 1.0 1.1 1.2 Yu M. H., He L. N. (1991) A new model and theory on yield and failure of materials under the complex stress state. Mechanical Behaviour of Materials-6 (ICM-6). Jono M and Inoue T eds. Pergamon Press, Oxford, (3), pp. 841–846. https://doi.org/10.1016/B978-0-08-037890-9.50389-6
  2. Yu M. H. (2004) Unified Strength Theory and Its Applications. Springer: Berlin. ISBN 978-3-642-18943-2
  3. Zhao, G.-H.; Ed., (2006) Handbook of Engineering Mechanics, Rock Mechanics, Engineering Structures and Materials (in Chinese), China's Water Conservancy Resources and Hydropower Press, Beijing, pp. 20-21
  4. Yu M. H. (2018) Unified Strength Theory and Its Applications (second edition). Springer and Xi'an Jiaotong University Press, Springer and Xi'an. ISBN 978-981-10-6247-6
  5. Teodorescu, P.P. (Bucureşti). (2006). Review: Unified Strength Theory and its applications, Zentralblatt MATH Database 1931 – 2009, European Mathematical Society,Zbl 1059.74002, FIZ Karlsruhe & Springer-Verlag
  6. Altenbach, H., Bolchoun, A., Kolupaev, V.A. (2013). Phenomenological Yield and Failure Criteria, in Altenbach, H., Öchsner, A., eds., Plasticity of Pressure-Sensitive Materials, Serie ASM, Springer, Heidelberg, pp. 49-152.
  7. Kolupaev, V. A., Altenbach, H. (2010). Considerations on the Unified Strength Theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu), Forschung im Ingenieurwesen, 74(3), pp. 135-166.
  8. Yu M. H. (1961) Plastic potential and flow rules associated singular yield criterion. Res. Report of Xi'an Jiaotong University. Xi'an, China (in Chinese)
  9. Yu MH (1983) Twin shear stress yield criterion. International Journal of Mechanical Sciences, 25(1), pp. 71-74. https://doi.org/10.1016/0020-7403(83)90088-7
  10. Yu M. H., He L. N., Song L. Y. (1985) Twin shear stress theory and its generalization. Scientia Sinica (Sciences in China), English edn. Series A, 28(11), pp. 1174–1183.
  11. Yu M. H. et al., (2006) Generalized Plasticity. Springer: Berlin. ISBN 978-3-540-30433-3
  12. Yu M. H., Ma G. W., Li J. C. (2009) Structural Plasticity: Limit, Shakedown and Dynamic Plastic Analyses of Structures. ZJU Press and Springer: Hangzhou and Berlin. ISBN 978-3-540-88152-0
  13. Yu M. H., Li J. C. (2012) Computational Plasticity, Springer and ZJU Press: Berlin and Hangzhou. ISBN 978-3-642-24590-9
  14. Fan, S. C., Qiang, H. F. (2001). Normal high-velocity impaction concrete slabs-a simulation using the meshless SPH procedures. Computational Mechanics-New Frontiers for New Millennium, Valliappan S. and Khalili N. eds. Elsevier Science Ltd, pp. 1457-1462
  15. Guowei, M., Iwasaki, S., Miyamoto, Y. and Deto, H., 1998. Plastic limit analyses of circular plates with respect to unified yield criterion. International journal of mechanical sciences, 40(10), pp.963-976. https://doi.org/10.1016/S0020-7403(97)00140-9