Wythoff symbol

From The Right Wiki
Jump to navigationJump to search
File:Wythoffian construction diagram.svg
Example Wythoff construction triangles with the 7 generator points. Lines to the active mirrors are colored red, yellow, and blue with the 3 nodes opposite them as associated by the Wythoff symbol.
File:Wythoff construction-pqr.png
The eight forms for the Wythoff constructions from a general triangle (p q r).

In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. Later the Coxeter diagram was developed to mark uniform polytopes and honeycombs in n-dimensional space within a fundamental simplex. A Wythoff symbol consists of three numbers and a vertical bar. It represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators. For example, the regular cube can be represented by 3 | 2 4 with Oh symmetry, and 2 4 | 2 as a square prism with 2 colors and D4h symmetry, as well as 2 2 2 | with 3 colors and D2h symmetry. With a slight extension, Wythoff's symbol can be applied to all uniform polyhedra. However, the construction methods do not lead to all uniform tilings in Euclidean or hyperbolic space.

Description

The Wythoff construction begins by choosing a generator point on a fundamental triangle. This point must be chosen at equal distance from all edges that it does not lie on, and a perpendicular line is then dropped from it to each such edge. The three numbers in Wythoff's symbol, p, q, and r, represent the corners of the Schwarz triangle used in the construction, which are π/p, π/q, and π/r radians respectively. The triangle is also represented with the same numbers, written (p q r). The vertical bar in the symbol specifies a categorical position of the generator point within the fundamental triangle according to the following:

  • p | q r indicates that the generator lies on the corner p,
  • p q | r indicates that the generator lies on the edge between p and q,
  • p q r | indicates that the generator lies in the interior of the triangle.

In this notation the mirrors are labeled by the reflection-order of the opposite vertex. The p, q, r values are listed before the bar if the corresponding mirror is active. A special use is the symbol | p q r which is designated for the case where all mirrors are active, but odd-numbered reflected images are ignored. The resulting figure has rotational symmetry only. The generator point can either be on or off each mirror, activated or not. This distinction creates 8 (23) possible forms, but the one where the generator point is on all the mirrors is impossible. The symbol that would normally refer to that is reused for the snub tilings. The Wythoff symbol is functionally similar to the more general Coxeter-Dynkin diagram, in which each node represents a mirror and the arcs between them – marked with numbers – the angles between the mirrors. (An arc representing a right angle is omitted.) A node is circled if the generator point is not on the mirror.

Example spherical, euclidean and hyperbolic tilings on right triangles

The fundamental triangles are drawn in alternating colors as mirror images. The sequence of triangles (p 3 2) change from spherical (p = 3, 4, 5), to Euclidean (p = 6), to hyperbolic (p ≥ 7). Hyperbolic tilings are shown as a Poincaré disk projection.

Wythoff symbol q | p 2 2 q | p 2 | p q 2 p | q p | q 2 p q | 2 p q 2 | | p q 2
Coxeter diagram File:CDel node 1.pngFile:CDel p.pngFile:CDel node.pngFile:CDel q.pngFile:CDel node.png File:CDel node 1.pngFile:CDel p.pngFile:CDel node 1.pngFile:CDel q.pngFile:CDel node.png File:CDel node.pngFile:CDel p.pngFile:CDel node 1.pngFile:CDel q.pngFile:CDel node.png File:CDel node.pngFile:CDel p.pngFile:CDel node 1.pngFile:CDel q.pngFile:CDel node 1.png File:CDel node.pngFile:CDel p.pngFile:CDel node.pngFile:CDel q.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel p.pngFile:CDel node.pngFile:CDel q.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel p.pngFile:CDel node 1.pngFile:CDel q.pngFile:CDel node 1.png File:CDel node h.pngFile:CDel p.pngFile:CDel node h.pngFile:CDel q.pngFile:CDel node h.png
Vertex figure pq q.2p.2p p.q.p.q p.2q.2q qp p.4.q.4 4.2p.2q 3.3.p.3.q
Fund. triangles 7 forms and snub
(3 3 2)
File:Tetrahedral reflection domains.png
3 | 3 2
File:Uniform tiling 332-t0-1-.png
33
2 3 | 3
File:Uniform tiling 332-t01-1-.png
3.6.6
2 | 3 3
File:Uniform tiling 332-t1-1-.png
3.3.3.3
2 3 | 3
File:Uniform tiling 332-t12.png
3.6.6
3 | 3 2
File:Uniform tiling 332-t2.png
33
3 3 | 2
File:Uniform tiling 332-t02.png
3.4.3.4
3 3 2 |
File:Uniform tiling 332-t012.png
4.6.6
| 3 3 2
File:Spherical snub tetrahedron.png
3.3.3.3.3
(4 3 2)
File:Octahedral reflection domains.png
3 | 4 2
File:Uniform tiling 432-t0.png
43
2 3 | 4
File:Uniform tiling 432-t01.png
3.8.8
2 | 4 3
File:Uniform tiling 432-t1.png
3.4.3.4
2 4 | 3
File:Uniform tiling 432-t12.png
4.6.6
4 | 3 2
File:Uniform tiling 432-t2.png
34
4 3 | 2
File:Uniform tiling 432-t02.png
3.4.4.4
4 3 2 |
File:Uniform tiling 432-t012.png
4.6.8
| 4 3 2
File:Spherical snub cube.png
3.3.3.3.4
(5 3 2)
File:Icosahedral reflection domains.png
3 | 5 2
File:Uniform tiling 532-t0.png
53
2 3 | 5
File:Uniform tiling 532-t01.png
3.10.10
2 | 5 3
File:Uniform tiling 532-t1.png
3.5.3.5
2 5 | 3
File:Uniform tiling 532-t12.png
5.6.6
5 | 3 2
File:Uniform tiling 532-t2.png
35
5 3 | 2
File:Uniform tiling 532-t02.png
3.4.5.4
5 3 2 |
File:Uniform tiling 532-t012.png
4.6.10
| 5 3 2
File:Spherical snub dodecahedron.png
3.3.3.3.5
(6 3 2)
File:Tile V46b.svg
3 | 6 2
File:Uniform tiling 63-t0.svg
63
2 3 | 6
File:Uniform tiling 63-t01.png
3.12.12
2 | 6 3
File:Uniform tiling 63-t1.png
3.6.3.6
2 6 | 3
File:Uniform tiling 63-t12.svg
6.6.6
6 | 3 2
File:Uniform triangular tiling 111111.png
36
6 3 | 2
File:Uniform tiling 63-t02.png
3.4.6.4
6 3 2 |
File:Uniform tiling 63-t012.svg
4.6.12
| 6 3 2
File:Uniform tiling 63-snub.png
3.3.3.3.6
(7 3 2)
File:H2checkers 237.png
3 | 7 2
File:Heptagonal tiling.svg
73
2 3 | 7
File:Truncated heptagonal tiling.svg
3.14.14
2 | 7 3
File:Triheptagonal tiling.svg
3.7.3.7
2 7 | 3
File:Truncated order-7 triangular tiling.svg
7.6.6
7 | 3 2
File:Order-7 triangular tiling.svg
37
7 3 | 2
File:Rhombitriheptagonal tiling.svg
3.4.7.4
7 3 2 |
File:Truncated triheptagonal tiling.svg
4.6.14
| 7 3 2
File:Snub triheptagonal tiling.svg
3.3.3.3.7
(8 3 2)
File:H2checkers 238.png
3 | 8 2
File:H2-8-3-dual.svg
83
2 3 | 8
File:H2-8-3-trunc-dual.svg
3.16.16
2 | 8 3
File:H2-8-3-rectified.svg
3.8.3.8
2 8 | 3
File:H2-8-3-trunc-primal.svg
8.6.6
8 | 3 2
File:H2-8-3-primal.svg
38
8 3 | 2
File:H2-8-3-cantellated.svg
3.4.8.4
8 3 2 |
File:H2-8-3-omnitruncated.svg
4.6.16
| 8 3 2
File:H2-8-3-snub.svg
3.3.3.3.8
(∞ 3 2)
File:H2checkers 23i.png
3 | ∞ 2
File:H2-I-3-dual.svg
3
2 3 | ∞
File:H2 tiling 23i-3.png
3.∞.∞
2 | ∞ 3
File:H2 tiling 23i-2.png
3.∞.3.∞
2 ∞ | 3
File:H2 tiling 23i-6.png
∞.6.6
∞ | 3 2
File:H2 tiling 23i-4.png
3
∞ 3 | 2
File:H2 tiling 23i-5.png
3.4.∞.4
∞ 3 2 |
File:H2 tiling 23i-7.png
4.6.∞
| ∞ 3 2
File:Uniform tiling i32-snub.png
3.3.3.3.∞

See also

References

  • Coxeter Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter V: The Kaleidoscope, Section: 5.7 Wythoff's construction)
  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Coxeter, Longuet-Higgins, Miller, Uniform polyhedra, Phil. Trans. 1954, 246 A, 401–50.
  • Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 0-521-09859-9. pp. 9–10.

External links

ja:ワイソフ記号