Discrete orthogonal polynomials

From The Right Wiki
Revision as of 11:07, 26 June 2024 by imported>DrTJJ (Listeratur)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

In mathematics, a sequence of discrete orthogonal polynomials is a sequence of polynomials that are pairwise orthogonal with respect to a discrete measure. Examples include the discrete Chebyshev polynomials, Charlier polynomials, Krawtchouk polynomials, Meixner polynomials, dual Hahn polynomials, Hahn polynomials, and Racah polynomials. If the measure has finite support, then the corresponding sequence of discrete orthogonal polynomials has only a finite number of elements. The Racah polynomials give an example of this.

Definition

Consider a discrete measure μ on some set S={s0,s1,} with weight function ω(x). A family of orthogonal polynomials {pn(x)} is called discrete if they are orthogonal with respect to ω (resp. μ), i.e.,

xSpn(x)pm(x)ω(x)=κnδn,m,

where δn,m is the Kronecker delta.[1]

Remark

Any discrete measure is of the form

μ=iaiδsi,

so one can define a weight function by ω(si)=ai.

Literature

  • Baik, Jinho; Kriecherbauer, T.; McLaughlin, K. T.-R.; Miller, P. D. (2007), Discrete orthogonal polynomials. Asymptotics and applications, Annals of Mathematics Studies, vol. 164, Princeton University Press, ISBN 978-0-691-12734-7, MR 2283089

References

  1. Arvesú, J.; Coussement, J.; Van Assche, Walter (2003). "Some discrete multiple orthogonal polynomials". Journal of Computational and Applied Mathematics. 153: 19–45.