Charlier polynomials

From The Right Wiki
Jump to navigationJump to search

In mathematics, Charlier polynomials (also called Poisson–Charlier polynomials) are a family of orthogonal polynomials introduced by Carl Charlier. They are given in terms of the generalized hypergeometric function by

Cn(x;μ)=2F0(n,x;;1/μ)=(1)nn!Ln(1x)(1μ),

where L are generalized Laguerre polynomials. They satisfy the orthogonality relation

x=0μxx!Cn(x;μ)Cm(x;μ)=μneμn!δnm,μ>0.

They form a Sheffer sequence related to the Poisson process, similar to how Hermite polynomials relate to the Brownian motion.

See also

References

  • C. V. L. Charlier (1905–1906) Über die Darstellung willkürlicher Funktionen, Ark. Mat. Astr. och Fysic 2, 20.
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Szegő, Gabor (1939), Orthogonal Polynomials, Colloquium Publications – American Mathematical Society, ISBN 978-0-8218-1023-1, MR 0372517