Kha (Devanagari)

From The Right Wiki
(Redirected from )
Jump to navigationJump to search
Kha
Usage
Writing systemDevanagari script
TypeAbugida
Language of originSanskrit
Sound values
In UnicodeU+0916
History
Development
Other
Writing directionLeft-to-Right
This article contains phonetic transcriptions in the International Phonetic Alphabet (IPA). For an introductory guide on IPA symbols, see Help:IPA. For the distinction between [ ], / / and ⟨ ⟩, see IPA § Brackets and transcription delimiters.

Kha () (खवर्ण khavarna) is the second consonant of the Devanagari abugida. It ultimately arose from the Brahmi letter 𑀔 (ka), after having gone through the Gupta letter File:Gupta allahabad kh.svg. Letters that derive from it are the Gujarati letter , and the Modi letter 𑘏.

Devanagari-using languages

In all languages, ख is pronounced as [kʰə] or [] when appropriate.

In this example, ख implements its inherent vowel, the schwa.

In this example, ख deletes the inherent schwa for correct pronunciation. Certain words that have been borrowed from Persian and Arabic implement the nukta to more properly approximate the original word. It is then transliterated as a x.

Conjuncts with ख

  • ख+य = व्याख्या, ख्याल, विख्यात।

Mathematics

Āryabhaṭa numeration

Aryabhata used Devanagari letters for numbers, very similar to that of the Greeks, even after the invention of Indian numerals. The values of the different forms of ख are:[1]

  • [kʰə] = 2 (२)
  • खि [kʰɪ] = 200 (२००)
  • खु [kʰʊ] = 20,000 (२० ०००)
  • खृ [kʰri] = 2,000,000 (२० ०० ०००)
  • खॢ [kʰlə] = 2×108 (२० ०० ०० ०००)
  • खे [kʰe] = 2×1010 (२० ०० ०० ०० ०००)
  • खै [kʰɛː] = 2×1012 (२० ०० ०० ०० ०० ०००)
  • खो [kʰoː] = 2×1014 (२० ०० ०० ०० ०० ०० ०००)
  • खौ [kʰɔː] = 2×1016 (२० ०० ०० ०० ०० ०० ०० ०००)

References

  1. Ifrah, Georges (2000). The Universal History of Numbers. From Prehistory to the Invention of the Computer. New York: John Wiley & Sons. pp. 447–450. ISBN 0-471-39340-1.
  • Kurt Elfering: Die Mathematik des Aryabhata I. Text, Übersetzung aus dem Sanskrit und Kommentar. Wilhelm Fink Verlag, München, 1975, ISBN 3-7705-1326-6
  • Georges Ifrah: The Universal History of Numbers. From Prehistory to the Invention of the Computer. John Wiley & Sons, New York, 2000, ISBN 0-471-39340-1.
  • B. L. van der Waerden: Erwachende Wissenschaft. Ägyptische, babylonische und griechische Mathematik. Birkhäuser-Verlag, Basel Stuttgart, 1966, ISBN 3-7643-0399-9
  • Fleet, J. F. (January 1911). "Aryabhata's System of Expressing Numbers". Journal of the Royal Asiatic Society of Great Britain and Ireland. 43: 109–126. doi:10.1017/S0035869X00040995. ISSN 0035-869X. JSTOR 25189823.
  • Fleet, J. F. (1911). "Aryabhata's System of Expressing Numbers". The Journal of the Royal Asiatic Society of Great Britain and Ireland. 43. Royal Asiatic Society of Great Britain and Ireland: 109–126. doi:10.1017/S0035869X00040995. JSTOR 25189823.