CDC14A

From The Right Wiki
Jump to navigationJump to search

An Error has occurred retrieving Wikidata item for infobox Dual specificity protein phosphatase CDC14A is an enzyme that in humans is encoded by the CDC14A gene.[1][2][3] The protein encoded by this gene is a member of the dual specificity protein tyrosine phosphatase family. This protein is highly similar to Saccharomyces cerevisiae Cdc14, a protein tyrosine phosphatase involved in the exit of cell mitosis and initiation of DNA replication, which suggests the role in cell cycle control. This protein has been shown to interact with and dephosphorylates tumor suppressor protein p53, and is thought to regulate the function of p53. Alternative splice of this gene results in 3 transcript variants encoding distinct isoforms.[3]

Interactions

CDC14A has been shown to interact with P53, de-phosphorylate p53 at Serine 315 and thereby stabilize p53.[4] S315-phosphorylated p53, in contrast to other p53 phosphorylation, was shown to facilitate p53 degradation.[5]

References

  1. Li L, Ernsting BR, Wishart MJ, Lohse DL, Dixon JE (December 1997). "A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast". J Biol Chem. 272 (47): 29403–6. doi:10.1074/jbc.272.47.29403. PMID 9367992.
  2. Wong AK, Chen Y, Lian L, Ha PC, Petersen K, Laity K, Carillo A, Emerson M, Heichman K, Gupte J, Tavtigian SV, Teng DH (September 1999). "Genomic structure, chromosomal location, and mutation analysis of the human CDC14A gene". Genomics. 59 (2): 248–51. doi:10.1006/geno.1999.5863. PMID 10409437.
  3. 3.0 3.1 "Entrez Gene: CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae)".
  4. Li, L; Ljungman M; Dixon J E (January 2000). "The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53 at Serine 315". J. Biol. Chem. 275 (4): 2410–4. doi:10.1074/jbc.275.4.2410. ISSN 0021-9258. PMID 10644693.
  5. Li, Y; Cui K; Zhang Q; Li X; Lin X; Tang Y; Prochownik E; Li Y (July 2021). "FBXL6 degrades phosphorylated p53 to promote tumor growth". Cell Death Differ. 28 (7): 2112–2125. doi:10.1038/s41418-021-00739-6. ISSN 1350-9047. PMC 8257708. PMID 33568778.

External links

Further reading