Wilson polynomials

From The Right Wiki
Jump to navigationJump to search

In mathematics, Wilson polynomials are a family of orthogonal polynomials introduced by James A. Wilson (1980) that generalize Jacobi polynomials, Hahn polynomials, and Charlier polynomials. They are defined in terms of the generalized hypergeometric function and the Pochhammer symbols by

pn(t2)=(a+b)n(a+c)n(a+d)n4F3(na+b+c+d+n1ata+ta+ba+ca+d;1).

See also

References

  • Wilson, James A. (1980), "Some hypergeometric orthogonal polynomials", SIAM Journal on Mathematical Analysis, 11 (4): 690–701, doi:10.1137/0511064, ISSN 0036-1410, MR 0579561
  • Koornwinder, T.H. (2001) [1994], "Wilson polynomials", Encyclopedia of Mathematics, EMS Press