Fuglede's theorem

From The Right Wiki
Jump to navigationJump to search

In mathematics, Fuglede's theorem is a result in operator theory, named after Bent Fuglede.

The result

Theorem (Fuglede) Let T and N be bounded operators on a complex Hilbert space with N being normal. If TN = NT, then TN* = N*T, where N* denotes the adjoint of N. Normality of N is necessary, as is seen by taking T=N. When T is self-adjoint, the claim is trivial regardless of whether N is normal: TN*=(NT)*=(TN)*=N*T. Tentative Proof: If the underlying Hilbert space is finite-dimensional, the spectral theorem says that N is of the form N=iλiPi where Pi are pairwise orthogonal projections. One expects that TN = NT if and only if TPi = PiT. Indeed, it can be proved to be true by elementary arguments (e.g. it can be shown that all Pi are representable as polynomials of N and for this reason, if T commutes with N, it has to commute with Pi...). Therefore T must also commute with N*=iλ¯iPi. In general, when the Hilbert space is not finite-dimensional, the normal operator N gives rise to a projection-valued measure P on its spectrum, σ(N), which assigns a projection PΩ to each Borel subset of σ(N). N can be expressed as N=σ(N)λdP(λ). Differently from the finite dimensional case, it is by no means obvious that TN = NT implies TPΩ = PΩT. Thus, it is not so obvious that T also commutes with any simple function of the form ρ=iλ¯PΩi. Indeed, following the construction of the spectral decomposition for a bounded, normal, not self-adjoint, operator T, one sees that to verify that T commutes with PΩi, the most straightforward way is to assume that T commutes with both N and N*, giving rise to a vicious circle! That is the relevance of Fuglede's theorem: The latter hypothesis is not really necessary.

Putnam's generalization

The following contains Fuglede's result as a special case. The proof by Rosenblum pictured below is just that presented by Fuglede for his theorem when assuming N=M. Theorem (Calvin Richard Putnam)[1] Let T, M, N be linear operators on a complex Hilbert space, and suppose that M and N are normal, T is bounded and MT = TN. Then M*T = TN*. First proof (Marvin Rosenblum): By induction, the hypothesis implies that MkT = TNk for all k. Thus for any λ in , eλ¯MT=Teλ¯N. Consider the function F(λ)=eλM*TeλN*. This is equal to eλM*[eλ¯MTeλ¯N]eλN*=U(λ)TV(λ)1, where U(λ)=eλM*λ¯M because M is normal, and similarly V(λ)=eλN*λ¯N. However we have U(λ)*=eλ¯MλM*=U(λ)1 so U is unitary, and hence has norm 1 for all λ; the same is true for V(λ), so F(λ)Tλ. So F is a bounded analytic vector-valued function, and is thus constant, and equal to F(0) = T. Considering the first-order terms in the expansion for small λ, we must have M*T = TN*. The original paper of Fuglede appeared in 1950; it was extended to the form given above by Putnam in 1951.[1] The short proof given above was first published by Rosenblum in 1958; it is very elegant, but is less general than the original proof which also considered the case of unbounded operators. Another simple proof of Putnam's theorem is as follows: Second proof: Consider the matrices T=[00T0]andN=[N00M]. The operator N' is normal and, by assumption, T' N' = N' T' . By Fuglede's theorem, one has T(N)*=(N)*T. Comparing entries then gives the desired result. From Putnam's generalization, one can deduce the following: Corollary If two normal operators M and N are similar, then they are unitarily equivalent. Proof: Suppose MS = SN where S is a bounded invertible operator. Putnam's result implies M*S = SN*, i.e. S1M*S=N*. Take the adjoint of the above equation and we have S*M(S1)*=N. So S*M(S1)*=S1MSSS*M(SS*)1=M. Let S*=VR, with V a unitary (since S is invertible) and R the positive square root of SS*. As R is a limit of polynomials on SS*, the above implies that R commutes with M. It is also invertible. Then N=S*M(S*)1=VRMR1V*=VMV*. Corollary If M and N are normal operators, and MN = NM, then MN is also normal. Proof: The argument invokes only Fuglede's theorem. One can directly compute (MN)(MN)*=MN(NM)*=MNM*N*. By Fuglede, the above becomes =MM*NN*=M*MN*N. But M and N are normal, so =M*N*MN=(MN)*MN.

C*-algebras

The theorem can be rephrased as a statement about elements of C*-algebras. Theorem (Fuglede-Putnam-Rosenblum) Let x, y be two normal elements of a C*-algebra A and z such that xz = zy. Then it follows that x* z = z y*.

References

  1. 1.0 1.1 Putnam, C. R. (April 1951). "On Normal Operators in Hilbert Space". American Journal of Mathematics. 73 (2): 357–362. doi:10.2307/2372180. JSTOR 2372180.