Coordinates: 8°00′00″N 74°00′00″W / 8.00000°N 74.00000°W / 8.00000; -74.00000

Noreán Formation

From The Right Wiki
Jump to navigationJump to search
Noreán Formation
Stratigraphic range: Sinemurian-Toarcian
194.6–174.8 Ma
File:Quebrada - panoramio.jpg
Outcrop of the Effusive Rhyolitic Unit (Jner) south of Pailitas, Cesar[1]
TypeGeological formation
Sub-unitsSee text
UnderliesTablazo & La Luna Formations
OverliesBocas, Morrocoyal & Sudán Formations
Norosí Batholith, San Lucas & Bucaramanga Gneiss
Thickness2,062 m (6,765 ft)
Lithology
PrimaryAndesitic-rhyolitic lavas & pyroclastics
OtherIgnimbrites, thin sandstones
Location
Coordinates8°00′00″N 74°00′00″W / 8.00000°N 74.00000°W / 8.00000; -74.00000
RegionBolívar, Cesar & Santander
CountryFile:Flag of Colombia.svg Colombia
ExtentSerranía de San Lucas & Eastern Ranges, Andes
VIM & VMM (subsurface)
Type section
Named forCaserío Noreán
Named byClavijo
LocationAguachica
Year defined1995
Coordinates8°22′54″N 73°36′38″W / 8.38167°N 73.61056°W / 8.38167; -73.61056
RegionCesar
CountryFile:Flag of Colombia.svg Colombia
File:Blakey 200Ma - COL.jpg
Paleogeography of Northern South America
200 Ma, by Ron Blakey

The Noreán Formation (Spanish: Formación Noreán, J1-2n,[2][3] J1n)[4] is a geological formation of the Eastern Ranges of the Colombian Andes, the Serranía de San Lucas and as basement underlying the southernmost Lower and northern Middle Magdalena Valleys. The formation consists of volcanic and pyroclastic lavas that range from andesites to rhyolites. Vitric, lithic and crystal tuffs and andesitic dikes and hypabyssal bodies are also present in the formation. The more than 2,000 metres (6,600 ft) thick formation was deposited in a continental arc magmatic setting in an Early Jurassic graben that presently forms the basement of the Middle Magdalena Valley (VMM). A positive anomaly of Pb suggests a subduction-related genesis dominated by explosive volcanism.

Etymology

The Noreán Formation was first defined as the "Unidad Volcanoclástica de Noreán" ("Volcanoclastic Unit of Noreán") in 1995 and in the same year elevated to a formal formation by Clavijo in 1995 as part of the geologic mapping for Plancha 65 Tamalameque and named after the caserío Noreán, 1 kilometre (0.62 mi) north of Aguachica, Cesar.[5] The type locality of the Noreán Formation is along the road between Buturama and Bombeadero in Aguachica.[6]

Description

The Noreán Formation is found in the northern part of the Eastern Ranges of the Colombian Andes, stretching from the Cesar Department in the north, towards the Serranía de San Lucas in Bolívar to the Santander Massif in Santander in the south. The formation forms the economic basement in the southern Lower Magdalena Valley (VIM) and the northern Middle Magdalena Valley (VMM). The formation is interpreted as characteristic of an important explosive volcanic phase, the materials of which were deposited in a graben setting of the Middle Magdalena Valley. The Early Jurassic basin was covered by a shallow sea and in part drained by rivers and lakes. The basin at time of deposition was bordered by a volcanic arc, characterized by basaltic to calc-alkaline magmas.[7] The formation also comprises less than 1 metre (3.3 ft) thin very fine to fine sandstone beds constituting quartz (90 to 60%), feldspars (10 to 40%) and lithic fragments (1-2 %).[8] The volcanic and pyroclastic rocks of the Noreán Formation are composed of lavas that range from andesitic to rhyolitic, together with vitric, lithic and crystal tuffs. Mainly andesitic dikes and hypabyssal bodies are also present. Geochemically, the volcanic and pyroclastic rocks exhibit chemical similarities, belong to the calc-alkaline series and have negative anomalies of Nb, P and Ti and a positive anomaly of Pb, suggesting a subduction-related genesis.[9] U-Pb zircon geochronology resulted in ages of 192.4 ± 2.2 Ma in a basaltic andesite, 184.9 ± 2.0 Ma in an andesitic lava and 175.9 ± 1.1 Ma in a rhyolitic lava, indicating the occurrence of volcanic events in this section of the Noreán Formation from the Lower to the earliest Middle Jurassic. Zircon inheritance suggests that the volcanic arc was emplaced in a Meso- to Neoproterozoic basement. The Noreán Formation represents continental arc magmatism,[9] which occurred during a phase of extensional tectonics along the continental margin of northwestern South America from approximately 195 to 168 Ma.[10]

Stratigraphy

To the northwest of the Santander Massif, the formation overlies the Bocas Formation and is unconformably overlain by the Tablazo Formation.[6] In some locations in this area, the formation is found in faulted contact with the Bucaramanga Gneiss, La Virgen Formation and the Tablazo and La Luna Formations. In the Serranía de San Lucas, the Noreán Formation conformably overlies the Morrocoyal Formation and in this area is overlain by the Tablazo Formation and the Arenal Conglomeratic Unit. Across the San Lucas mountains, the formation is in faulted and discordant contact with the Norosí Batholith, the San Lucas Gneiss and the Sudán Formation.[7] The formation is offset by the megaregional Bucaramanga-Santa Marta Fault.[3][1]

Subdivision

On the western flanks of the Eastern Cordillera, the formation is subdivided into six units and in the Serranía de San Lucas into four (1, 3, 5 and 6 of the six named below), from young to old:

  1. Hypobyssal Andesitic Unit (Jnha) - 12 metres (39 ft)[11]
  2. Effusive Rhyolitic Unit (Jner) - 150 metres (490 ft)[12]
  3. Dacitic Effusive Unit (Jned) - 350 metres (1,150 ft)[13]
  4. Pyroclastic and Effusive Dacitic Unit (Jnpd) - 450 metres (1,480 ft)[14]
  5. Effusive Spherulitic Unit (Jnee) - 300 metres (980 ft)[15]
  6. Pyroclastic-epiclastic Unit (Jnpe) - 800 metres (2,600 ft)[16]

Age

File:Geologic map of the northern Middle Magdalena Valley with Noreán Formation age dating sites.jpg
Geologic map of the northern VMM and Santander Massif with the Noreán Formation in light purple. U-Pb dating sites with associated ages are indicated.

The age of the Noreán Formation has been established using potassium-argon (K-Ar), rubidium-strontium (Rb-Sr), and uranium-lead dating (U-Pb). The first method gave an age range of 194 ± 6 Ma, the Rb-Sr dating method provided a range of 161 ± 27 Ma and U-Pb dating of zircons resulted in ages of 201.6 ± 3.6 and 196.1 ± 4.4.[7] Refined dating of the formation performed in 2019 by Correa Martínez et al. concluded an age range between 192.4 ± 2.2 and 175.9 ± 1.1 Ma, spanning most of the Early Jurassic, from Sinemurian to Toarcian.[17] The Noreán Formation was intruded by the San Lucas Granitoid in the Middle Jurassic, dated at 166.9 ± 6 Ma.[18] A 2020 thermochronological study concluded that the Jurassic volcanic rocks covering the Santander Massif were exhumed during the latest Cretaceous to early Paleocene.[19]

Outcrops

The northernmost outcrop of the Noreán Formation is found in Chimichagua, Cesar.[2] In Cesar, outcrops occur south of the village of Saloa and around the town of Pailitas,[3] east of Tamalameque and Pelaya and west of La Gloria,[1] in the western part of Morales, Bolívar, north and east of Aguachica where its type locality is situated,[20] in the Serranía de San Lucas, where the urban center of Santa Rosa del Sur rests on top of the formation,[21] in the west of San Pablo, Bolívar,[22] and in the western part of Cantagallo, Bolívar.[23]

Regional correlations

In the Santander Massif, the Noreán Formation has been correlated to the Jordán Formation, while in the Serranía de San Lucas the formation correlates with and is partly overlying the Morrocoyal Formation. In the Sierra Nevada de Santa Marta of northern Colombia, the Noreán Formation is considered equivalent with the Guatapurí Formation, the Corual and Los Indios Formations and the ignimbrite complexes of Caja de Ahorros, La Paila and La Piña. In the Serranía del Perijá to the east of the extent of the formation, the Noreán Formation correlates with La Quinta Formation. In the La Guajira peninsula, the formation is time-equivalent with the Rancho Grande Formation while to the south of its area in the Upper Magdalena Valley the Noreán Formation is correlated with the Saldaña Formation.[7] The Lower Jurassic is missing in the Llanos Basin to the southeast of the extent of the Eastern Cordillera.[24]

Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
File:Blakey 000Ma - COL.jpg
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
File:Blakey Pleist - COL.jpg
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[25][26][27][28]
2.6 Pliocene
File:Blakey 020Ma - COL.jpg
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [27][29]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [28][30]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [29][28]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
File:Blakey 035Ma - COL.jpg
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [26][29]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [26][29][31]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[31]
35 Late Eocene
File:Blakey 050Ma - COL.jpg
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [28][32]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
File:Blakey 065Ma - COL.jpg
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[28][32]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [25][26][29][28][33]
65 Maastrichtian
File:Blakey 090Ma - COL.jpg
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [25][28]
72 Campanian End of rifting Colón-Mito Juan [28][34]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [25][28][35]
93 Cenomanian
File:Blakey 105Ma - COL.jpg
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [29][35]
113 Aptian
File:Blakey 120Ma - COL.jpg
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [26][28][36]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [25]
129 Hauterivian
File:Blakey 150Ma - COL.jpg
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [25]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [26][37]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [29][38]
150 Early-Mid Jurassic
File:Blakey 170Ma - COL.jpg
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[39]
201 Late Triassic
File:Blakey 200Ma - COL.jpg
Mucuchachi Payandé [29]
235 Early Triassic
File:237 Ma orogenies reconstruction.jpg
Pangea hiatus "Paleozoic"
250 Permian
File:280 Ma plate tectonic reconstruction.png
300 Late Carboniferous
File:Laurasia 330Ma.jpg
Famatinian orogeny Cerro Neiva
()
[40]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
File:380 Ma plate tectonic reconstruction.png
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[37][41][42][43][44]
390 Early Devonian
File:Gondwana 420 Ma.png
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
File:Middle Ordovician South Polar paleogeography - 460 Ma.png
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[45][46][47]
488 Late Cambrian
File:ক্যাম্ব্রিয়ান৫০.png
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[48][49]
515 Early Cambrian Cambrian explosion [47][50]
542 Ediacaran
File:Positions of ancient continents, 550 million years ago.jpg
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [51][52]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [48]
800
File:Pannotia - 2.png
Snowball Earth [53]
1000 Mesoproterozoic
File:Paleoglobe NO 1260 mya.gif
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[54][55][56][57]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[58]
1400
File:Paleoglobe NO 1590 mya-vector-colors.svg
pre-Bucaramanga [59]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [60]
1800
File:2050ma.png
Tapajós orogeny Mitú
(1800)
[58][60]
1950 Transamazonic orogeny pre-Mitú [58]
2200 Columbia
2530 Archean
File:Kenorland.jpg
Carajas-Imataca orogeny [58]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]

See also

Notes

  1. based on Duarte et al. (2019)[61], García González et al. (2009),[62] and geological report of Villavicencio[63]
  2. based on Duarte et al. (2019)[61] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[64]

References

  1. 1.0 1.1 1.2 Plancha 65, 1994
  2. 2.0 2.1 Plancha 47, 2001
  3. 3.0 3.1 3.2 Plancha 55, 2006
  4. González Iregui et al., 2015, p.56
  5. Royero, 1996, p.10
  6. 6.0 6.1 Correa Martínez et al., 2019, p.31
  7. 7.0 7.1 7.2 7.3 Correa Martínez et al., 2019, p.32
  8. González Iregui et al., 2015, p.58
  9. 9.0 9.1 Correa Martínez et al., 2019, p.29
  10. Rodríguez García et al., 2020, p.43
  11. Royero, 1996, p.16
  12. Royero, 1996, pp.15-16
  13. Royero, 1996, p.15
  14. Royero, 1996, pp.13-15
  15. Royero, 1996, p.12
  16. Royero, 1996, pp.11-12
  17. Correa Martínez et al., 2019, p.43
  18. Clavijo et al., 2008, p.52
  19. Amaya Ferreira et al., 2020, p.11
  20. Plancha 75, 1992
  21. Plancha 85, 2006
  22. Plancha 96, 2006
  23. Plancha 108, 2012
  24. Barrero et al., 2007, p.70
  25. 25.0 25.1 25.2 25.3 25.4 25.5 García González et al., 2009, p.27
  26. 26.0 26.1 26.2 26.3 26.4 26.5 García González et al., 2009, p.50
  27. 27.0 27.1 García González et al., 2009, p.85
  28. 28.00 28.01 28.02 28.03 28.04 28.05 28.06 28.07 28.08 28.09 Barrero et al., 2007, p.60
  29. 29.0 29.1 29.2 29.3 29.4 29.5 29.6 29.7 Barrero et al., 2007, p.58
  30. Plancha 111, 2001, p.29
  31. 31.0 31.1 Plancha 177, 2015, p.39
  32. 32.0 32.1 Plancha 111, 2001, p.26
  33. Plancha 111, 2001, p.24
  34. Plancha 111, 2001, p.23
  35. 35.0 35.1 Pulido & Gómez, 2001, p.32
  36. Pulido & Gómez, 2001, p.30
  37. 37.0 37.1 Pulido & Gómez, 2001, pp.21-26
  38. Pulido & Gómez, 2001, p.28
  39. Correa Martínez et al., 2019, p.49
  40. Plancha 303, 2002, p.27
  41. Terraza et al., 2008, p.22
  42. Plancha 229, 2015, pp.46-55
  43. Plancha 303, 2002, p.26
  44. Moreno Sánchez et al., 2009, p.53
  45. Mantilla Figueroa et al., 2015, p.43
  46. Manosalva Sánchez et al., 2017, p.84
  47. 47.0 47.1 Plancha 303, 2002, p.24
  48. 48.0 48.1 Mantilla Figueroa et al., 2015, p.42
  49. Arango Mejía et al., 2012, p.25
  50. Plancha 350, 2011, p.49
  51. Pulido & Gómez, 2001, pp.17-21
  52. Plancha 111, 2001, p.13
  53. Plancha 303, 2002, p.23
  54. Plancha 348, 2015, p.38
  55. Planchas 367-414, 2003, p.35
  56. Toro Toro et al., 2014, p.22
  57. Plancha 303, 2002, p.21
  58. 58.0 58.1 58.2 58.3 Bonilla et al., 2016, p.19
  59. Gómez Tapias et al., 2015, p.209
  60. 60.0 60.1 Bonilla et al., 2016, p.22
  61. 61.0 61.1 Duarte et al., 2019
  62. García González et al., 2009
  63. Pulido & Gómez, 2001
  64. García González et al., 2009, p.60

Bibliography

  • Amaya Ferreira, Sergio; Zuluaga, Carlos Augusto; Bernet, Matthias (2020), "Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia: Implications for the Tectonic Evolution of the Northern Andes in Northwestern South America" (PDF), Servicio Geológico Colombiano Publicaciones Especiales, 37: 1–17, retrieved 2020-07-13
  • Rodríguez García, Gabriel; Correa Martínez, Ana María; Zapata García, Gilberto; Arango Mejía, María Isabel; Obando Erazo, Gloria; Zapata Villada, Juan Pablo; Bermúdez, José Gilberto (2020), "Diverse Jurassic Magmatic Arcs of the Colombian Andes: Constraints from Petrography, Geochronology, and Geochemistry" (PDF), Servicio Geológico Colombiano Publicaciones Especiales, 36: 1–54, retrieved 2020-07-13
  • Correa Martínez, Ana María; Rodríguez, Gabriel; Arango, María Isabel; Zapata García, Gilberto (2019), "Petrografía, geoquímica y geocronología U-Pb de las rocas volcánicas y piroclásticas de la Formación Noreán al NW del Macizo de Santander, Colombia", Boletín de Geología, 41: 29–54, retrieved 2019-10-31 File:CC-BY icon.svg Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  • González Iregui, Humberto; Salinas Echeverri, Rosalba; Cárdenas, Jorge Ignacio; Muñoz Taborda, Carlos; Ayala Montoya, Germán; Vélez Giraldo, Wilson (2015), Memoria de la Plancha 56 - San Roque - 1:100,000, Servicio Geológico Colombiano, pp. 1–147
  • Clavijo, Jairo; Mantilla, Luís; Pinto, Jorge; Bernal, Luís; Pérez, Adrián (2008), "Evolución geológica de la Serranía de San Lucas, norte del Valle Medio del Magdalena y noroeste de la Cordillera Oriental", Boletín de Geología, 30: 45–62, retrieved 2020-07-13
  • Barrero, Dario; Pardo, Andrés; Vargas, Carlos A.; Martínez, Juan F. (2007), Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal, ANH, pp. 1–92
  • Royero, José María (1996), Memoria de la Plancha 65 - Tamalameque - 1:100,000, INGEOMINAS, pp. 1–78

Maps