Coordinates: 6°18′00″N 72°39′46″W / 6.30000°N 72.66278°W / 6.30000; -72.66278

Soatá Formation

From The Right Wiki
Jump to navigationJump to search
Soatá Formation
Stratigraphic range: Late Pleistocene
~0.0475–0.0388 Ma
TypeGeological formation
UnderliesHolocene sediments of the Chicamocha River
OverliesCapacho Formation
Area~130 km2 (50 sq mi)
Thicknessup to 30.8 m (101 ft)
Lithology
PrimaryShale
OtherConglomerate, siltstone
Location
Coordinates6°18′00″N 72°39′46″W / 6.30000°N 72.66278°W / 6.30000; -72.66278
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
CountryFile:Flag of Colombia.svg Colombia
Extent~30 km × 7 km (18.6 mi × 4.3 mi)
Type section
Named forSoatá
Named byVillarroel et al.
LocationPortugalete, Soatá
Year defined2001
Coordinates6°18′00″N 72°39′46″W / 6.30000°N 72.66278°W / 6.30000; -72.66278
Approximate paleocoordinates6°18′N 72°30′W / 6.3°N 72.5°W / 6.3; -72.5
RegionBoyacá
CountryFile:Flag of Colombia.svg Colombia
Thickness at type section30.8 m (101 ft)
File:Blakey Pleist - COL.jpg
Paleogeography of the Pleistocene
File:Rio Chicamocha on PANACHI 01.JPG
The Chicamocha River, seen here farther downstream at the Chicamocha Canyon, heavily eroded the former Pleistocene terraces of the Soatá Formation

The Soatá Formation (Spanish: Formación Soatá) is a geological formation of the northern Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The formation consists mainly of shales with conglomerates and dates to the Quaternary period; Late Pleistocene epoch. The heavily eroded formation has a maximum measured thickness of 30.8 metres (101 ft). It contains the lacustrine and fluvio-glacial sediments of elongated paleolake Soatá, that existed on the Altiplano in the valley of the Chicamocha River. Fossils of the gomphothere Haplomastodon waringi, the capibara Neochoerus sp. and the deer species Odocoileus cf. salinae have been found in the Soatá Formation. Knowledge about the formation has been provided by Colombian geologists Carlos Villarroel, Jorge Brieva and others.

Etymology

The formation was first proposed and named after Soatá by Villarroel et al. in 2001. The type locality is defined near Portugalete, Soatá.[1]

Regional setting

File:Peyto Lake-Banff NP-Canada.jpg
The Soatá Formation was deposited in a glacial lacustrine environment, in a narrow elongated deep paleolake

The Altiplano Cundiboyacense, in the Eastern Ranges of the Colombian Andes, was formed late in the regional uplift of the Andean orogeny. It is estimated that the main stage of uplift happened during the Plio-Pleistocene. The Western and Central Ranges were submerged much earlier, leaving a corridor to the Caribbean in the Neogene. The compression in the Andean orogenic belt caused the formation of fold and thrust belts in the Eastern Ranges, where Cretaceous and Jurassic normal faults were inverted as thrust faults lifting up the Paleozoic (Floresta and Cuche Formations), Mesozoic and Paleogene strata. A hiatus existed on the Altiplano between the Late Eocene and Late Miocene, in several parts of the Altiplano continuing until the Pleistocene. During the glacials and interglacials of the Pleistocene ("ice ages"), several paleolakes formed on the Altiplano Cundiboyacense, of which Lake Humboldt on the Bogotá savanna was the most extensive (approximately 4,500 square kilometres (1,700 sq mi)). Rivers were restricted during the drier glacial periods and the vegetation changed from páramo to Andean forest between the glacials and stadials and interglacials and interstadials.[2]

Description

File:HaplomastodonPisa.JPG
Fossils of the gomphothere Haplomastodon waringi were found in the Soatá Formation

Lithologies

The Soatá Formation consists of whitish calcareous claystones and sandy siltstones with plagioclase, hematite, zircon, green and reddish biotite, hornblende and crystalline calcite in its upper, older terrace. This unit also contains foraminifera and fragments of shells.[1] The middle, younger unit is composed of basal greyish claystones with non-uniform matrix-supported conglomerates at the upper section. The uppermost layer contains siltstones, probably of volcaniclastic origin.[3] The youngest sediments are found deepest in the basin and consist of claystones and greenish matrix-supported conglomerates. Rootlets and mammal fossils are more abundant in this layer.[3]

Stratigraphy

The Soatá Formation unconformably overlies the Cretaceous Capacho Formation, and is overlain by the Holocene infill sediments of the Chicamocha River, the course of which severely eroded and fragmented the Soatá formation.[4] The formation is subdivided into three units of different lithological character and sedimentary dip in a terrace setting. The Soatá Formation is time-equivalent with the upper part of the Sabana Formation on the Bogotá savanna and the Chinauta deposits near Fusagasugá in the southwest of the Altiplano.[5][6] Two samples were analysed for radiometric dating and provided ages of 45,900 ± 1,600 and 39,600 ± 800 years BP.[7] This corresponds to the Chicagota interstadial and the Tagua stadial, when the glaciations were at their maximum extent.[8][9]

Depositional environment

The depositional environment has been interpreted as lacustrine (Lake Soatá) and fluvio-deltaic. Contrasting with the wide and shallow Lake Humboldt on the Bogotá savanna, Lake Soatá was probably close to 400 metres (1,300 ft) deep.[10] The paleolake was approximately 30 kilometres (19 mi) long and widest between Soatá and Boavita at 7 kilometres (4.3 mi).[11]

Fossil content

In the Soatá Formation, fossils of Haplomastodon waringi, Neochoerus sp. and Odocoileus cf. salinae have been found.[12] The fossil content is fragmentary.[13]

Outcrops

Type locality of the Soatá Formation to the northeast of the Altiplano Cundiboyacense. The Chicamocha River valley is clearly visible.

The Soatá Formation is apart from its type locality Portugalete found around Soatá (Jútua), and stretches to the north near the border of Boyacá and Santander, northeast of Tipacoque. To the south, the formation may have reached until Socotá.[10]

Regional correlations

Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
File:Blakey 000Ma - COL.jpg
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
File:Blakey Pleist - COL.jpg
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[14][15][16][17]
2.6 Pliocene
File:Blakey 020Ma - COL.jpg
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [16][18]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [17][19]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [18][17]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
File:Blakey 035Ma - COL.jpg
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [15][18]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [15][18][20]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[20]
35 Late Eocene
File:Blakey 050Ma - COL.jpg
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [17][21]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
File:Blakey 065Ma - COL.jpg
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[17][21]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [14][15][18][17][22]
65 Maastrichtian
File:Blakey 090Ma - COL.jpg
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [14][17]
72 Campanian End of rifting Colón-Mito Juan [17][23]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [14][17][24]
93 Cenomanian
File:Blakey 105Ma - COL.jpg
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [18][24]
113 Aptian
File:Blakey 120Ma - COL.jpg
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [15][17][25]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [14]
129 Hauterivian
File:Blakey 150Ma - COL.jpg
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [14]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [15][26]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [18][27]
150 Early-Mid Jurassic
File:Blakey 170Ma - COL.jpg
Passive margin 2 La Quinta
Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[28]
201 Late Triassic
File:Blakey 200Ma - COL.jpg
Mucuchachi Payandé [18]
235 Early Triassic
File:237 Ma orogenies reconstruction.jpg
Pangea hiatus "Paleozoic"
250 Permian
File:280 Ma plate tectonic reconstruction.png
300 Late Carboniferous
File:Laurasia 330Ma.jpg
Famatinian orogeny Cerro Neiva
()
[29]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
File:380 Ma plate tectonic reconstruction.png
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[26][30][31][32][33]
390 Early Devonian
File:Gondwana 420 Ma.png
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
File:Middle Ordovician South Polar paleogeography - 460 Ma.png
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Guape
()
Río Nevado
()
[34][35][36]
488 Late Cambrian
File:ক্যাম্ব্রিয়ান৫০.png
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[37][38]
515 Early Cambrian Cambrian explosion [36][39]
542 Ediacaran
File:Positions of ancient continents, 550 million years ago.jpg
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [40][41]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [37]
800
File:Pannotia - 2.png
Snowball Earth [42]
1000 Mesoproterozoic
File:Paleoglobe NO 1260 mya.gif
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[43][44][45][46]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[47]
1400
File:Paleoglobe NO 1590 mya-vector-colors.svg
pre-Bucaramanga [48]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [49]
1800
File:2050ma.png
Tapajós orogeny Mitú
(1800)
[47][49]
1950 Transamazonic orogeny pre-Mitú [47]
2200 Columbia
2530 Archean
File:Kenorland.jpg
Carajas-Imataca orogeny [47]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]

See also

Notes

  1. based on Duarte et al. (2019)[50], García González et al. (2009),[51] and geological report of Villavicencio[52]
  2. based on Duarte et al. (2019)[50] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[53]

References

  1. 1.0 1.1 Villarroel et al., 2001, p.80
  2. Urrego et al., 2016, p.702
  3. 3.0 3.1 Villarroel et al., 2001, p.82
  4. IGAC, 2005, p.150
  5. Villarroel et al., 2001, p.84
  6. Hoyos et al., 2015, p.263
  7. Villarroel et al., 2001, p.90
  8. Hammen, 1986, p.27
  9. Rutter et al., 2012, p.32
  10. 10.0 10.1 Villarroel et al., 2001, p.88
  11. Villarroel et al., 2001, p.81
  12. Soatá at Fossilworks.org
  13. Villarroel et al., 1996, p.85
  14. 14.0 14.1 14.2 14.3 14.4 14.5 García González et al., 2009, p.27
  15. 15.0 15.1 15.2 15.3 15.4 15.5 García González et al., 2009, p.50
  16. 16.0 16.1 García González et al., 2009, p.85
  17. 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 Barrero et al., 2007, p.60
  18. 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 Barrero et al., 2007, p.58
  19. Plancha 111, 2001, p.29
  20. 20.0 20.1 Plancha 177, 2015, p.39
  21. 21.0 21.1 Plancha 111, 2001, p.26
  22. Plancha 111, 2001, p.24
  23. Plancha 111, 2001, p.23
  24. 24.0 24.1 Pulido & Gómez, 2001, p.32
  25. Pulido & Gómez, 2001, p.30
  26. 26.0 26.1 Pulido & Gómez, 2001, pp.21-26
  27. Pulido & Gómez, 2001, p.28
  28. Correa Martínez et al., 2019, p.49
  29. Plancha 303, 2002, p.27
  30. Terraza et al., 2008, p.22
  31. Plancha 229, 2015, pp.46-55
  32. Plancha 303, 2002, p.26
  33. Moreno Sánchez et al., 2009, p.53
  34. Mantilla Figueroa et al., 2015, p.43
  35. Manosalva Sánchez et al., 2017, p.84
  36. 36.0 36.1 Plancha 303, 2002, p.24
  37. 37.0 37.1 Mantilla Figueroa et al., 2015, p.42
  38. Arango Mejía et al., 2012, p.25
  39. Plancha 350, 2011, p.49
  40. Pulido & Gómez, 2001, pp.17-21
  41. Plancha 111, 2001, p.13
  42. Plancha 303, 2002, p.23
  43. Plancha 348, 2015, p.38
  44. Planchas 367-414, 2003, p.35
  45. Toro Toro et al., 2014, p.22
  46. Plancha 303, 2002, p.21
  47. 47.0 47.1 47.2 47.3 Bonilla et al., 2016, p.19
  48. Gómez Tapias et al., 2015, p.209
  49. 49.0 49.1 Bonilla et al., 2016, p.22
  50. 50.0 50.1 Duarte et al., 2019
  51. García González et al., 2009
  52. Pulido & Gómez, 2001
  53. García González et al., 2009, p.60

Bibliography

  • Van der Hammen, Thomas (1986), "Cambios medioambientales y la extinción del mastodonte en el norte de los Andes", Revista de Antropología, Universidad de los Andes, II: 27–34
  • Hoyos, Natalia; Monsalve, O.; Berger, G.W.; Antinao, J.L.; Giraldo, H.; Silva, C.; Ojeda, G.; Bayona, G.; Escobar and C. Montes, J. (2015), "A climatic trigger for catastrophic Pleistocene–Holocene debris flows in the Eastern Andean Cordillera of Colombia", Journal of Quaternary Science, 30 (3), John Wiley & Sons, Ltd.: 258–270, Bibcode:2015JQS....30..258H, doi:10.1002/jqs.2779
  • Rutter, N.; Coronato, A.; Helmens, K.; Rabassa, J.; Zárate, M. (2012), Glaciations in North and South America from the Miocene to the Last Glacial Maximum, Springer, pp. 1–67
  • Urrego, Dunia H.; Hooghiemstra, Henry; Rama Corredor, Oscar; Martrat, Belén; Grimalt, Joan O.; Thompson, Lonnie; Bush, Mark B.; González Carranza, Zaire; Hanselman, Bryan Valencia and César Velásquez Ruiz, Jennifer (2016), "Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods", Climate of the Past, 12 (3): 697–711, Bibcode:2016CliPa..12..697U, doi:10.5194/cp-12-697-2016, hdl:10871/20575
  • Villarroel, Carlos; Concha, Ana Elena; Macía, Carlos (2001), "El Lago Pleistoceno de Soatá (Boyacá, Colombia): Consideraciones estratigráficas, paleontológicas y paleoecológicas", Geología Colombiana, 26, Universidad Nacional de Colombia: 79–93
  • Villarroel, Carlos; Brieva B., Jorge; Cadena, Alberto (1996), "La Fauna de Mamíferos Fósiles del Pleistoceno de Jútua, Municipio de Soatá (Boyacá, Colombia)", Geología Colombiana, 21: 81–87
  • Various, Authors (2005), Estudio General de Suelos y Zonificación de Tierras del Departamento de Boyacá, IGAC, pp. 1–256