Truncated 8-simplexes
In eight-dimensional geometry, a truncated 8-simplex is a convex uniform 8-polytope, being a truncation of the regular 8-simplex. There are four unique degrees of truncation. Vertices of the truncation 8-simplex are located as pairs on the edge of the 8-simplex. Vertices of the bitruncated 8-simplex are located on the triangular faces of the 8-simplex. Vertices of the tritruncated 8-simplex are located inside the tetrahedral cells of the 8-simplex.
Truncated 8-simplex
Truncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t{37} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 288 |
Vertices | 72 |
Vertex figure | ( )v{3,3,3,3,3} |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Alternate names
- Truncated enneazetton (Acronym: tene) (Jonathan Bowers)[1]
Coordinates
The Cartesian coordinates of the vertices of the truncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | File:8-simplex t01.svg | File:8-simplex t01 A7.svg | File:8-simplex t01 A6.svg | File:8-simplex t01 A5.svg |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | File:8-simplex t01 A4.svg | File:8-simplex t01 A3.svg | File:8-simplex t01 A2.svg | |
Dihedral symmetry | [5] | [4] | [3] |
Bitruncated 8-simplex
Bitruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 2t{37} |
Coxeter-Dynkin diagrams | File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 1008 |
Vertices | 252 |
Vertex figure | { }v{3,3,3,3} |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Alternate names
- Bitruncated enneazetton (Acronym: batene) (Jonathan Bowers)[2]
Coordinates
The Cartesian coordinates of the vertices of the bitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | File:8-simplex t12.svg | File:8-simplex t12 A7.svg | File:8-simplex t12 A6.svg | File:8-simplex t12 A5.svg |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | File:8-simplex t12 A4.svg | File:8-simplex t12 A3.svg | File:8-simplex t12 A2.svg | |
Dihedral symmetry | [5] | [4] | [3] |
Tritruncated 8-simplex
tritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 3t{37} |
Coxeter-Dynkin diagrams | File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2016 |
Vertices | 504 |
Vertex figure | {3}v{3,3,3} |
Coxeter group | A8, [37], order 362880 |
Properties | convex |
Alternate names
- Tritruncated enneazetton (Acronym: tatene) (Jonathan Bowers)[3]
Coordinates
The Cartesian coordinates of the vertices of the tritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | File:8-simplex t23.svg | File:8-simplex t23 A7.svg | File:8-simplex t23 A6.svg | File:8-simplex t23 A5.svg |
Dihedral symmetry | [9] | [8] | [7] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | File:8-simplex t23 A4.svg | File:8-simplex t23 A3.svg | File:8-simplex t23 A2.svg | |
Dihedral symmetry | [5] | [4] | [3] |
Quadritruncated 8-simplex
Quadritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 4t{37} |
Coxeter-Dynkin diagrams | File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png or File:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png |
6-faces | 18 3t{3,3,3,3,3,3} |
7-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2520 |
Vertices | 630 |
Vertex figure | File:Quadritruncated 8-simplex verf.png {3,3}v{3,3} |
Coxeter group | A8, [[37]], order 725760 |
Properties | convex, isotopic |
The quadritruncated 8-simplex an isotopic polytope, constructed from 18 tritruncated 7-simplex facets.
Alternate names
- Octadecazetton (18-facetted 8-polytope) (Acronym: be) (Jonathan Bowers)[4]
Coordinates
The Cartesian coordinates of the vertices of the quadritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,2,2,2,2). This construction is based on facets of the quadritruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | File:8-simplex t34.svg | File:8-simplex t34 A7.svg | File:8-simplex t34 A6.svg | File:8-simplex t34 A5.svg |
Dihedral symmetry | [[9]] = [18] | [8] | [[7]] = [14] | [6] |
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | File:8-simplex t34 A4.svg | File:8-simplex t34 A3.svg | File:8-simplex t34 A2.svg | |
Dihedral symmetry | [[5]] = [10] | [4] | [[3]] = [6] |
Related polytopes
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3x3o3o3o3o3o3o - tene, o3x3x3o3o3o3o3o - batene, o3o3x3x3o3o3o3o - tatene, o3o3o3x3x3o3o3o - be