Uniform honeycombs in hyperbolic space

From The Right Wiki
Jump to navigationJump to search
Unsolved problem in mathematics:
Find the complete set of hyperbolic uniform honeycombs.

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

Four compact regular hyperbolic honeycombs
File:H3 534 CC center.png
Order-4 dodecahedral honeycomb
{5,3,4}
File:H3 535 CC center.png
Order-5 dodecahedral honeycomb
{5,3,5}
File:H3 435 CC center.png
Order-5 cubic honeycomb
{4,3,5}
File:H3 353 CC center.png
Icosahedral honeycomb
{3,5,3}
Poincaré ball model projections

Hyperbolic uniform honeycomb families

Honeycombs are divided between compact and paracompact forms defined by Coxeter groups, the first category only including finite cells and vertex figures (finite subgroups), and the second includes affine subgroups.

Compact uniform honeycomb families

The nine compact Coxeter groups are listed here with their Coxeter diagrams,[1] in order of the relative volumes of their fundamental simplex domains.[2] These 9 families generate a total of 76 unique uniform honeycombs. The full list of hyperbolic uniform honeycombs has not been proven and an unknown number of non-Wythoffian forms exist. Two known examples are cited with the {3,5,3} family below. Only two families are related as a mirror-removal halving: [5,31,1] ↔ [5,3,4,1+].

Indexed Fundamental
simplex
volume[2]
Witt
symbol
Coxeter
notation
Commutator
subgroup
Coxeter
diagram
Honeycombs
H1 0.0358850633 BH¯3 [5,3,4] [(5,3)+,4,1+]
= [5,31,1]+
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png 15 forms, 2 regular
H2 0.0390502856 J¯3 [3,5,3] [3,5,3]+ File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png 9 forms, 1 regular
H3 0.0717701267 DH¯3 [5,31,1] [5,31,1]+ File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.png 11 forms (7 overlap with [5,3,4] family, 4 are unique)
H4 0.0857701820 AB^3 [(4,3,3,3)] [(4,3,3,3)]+ File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.png 9 forms
H5 0.0933255395 K¯3 [5,3,5] [5,3,5]+ File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png 9 forms, 1 regular
H6 0.2052887885 AH^3 [(5,3,3,3)] [(5,3,3,3)]+ File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.png 9 forms
H7 0.2222287320 BB^3 [(4,3)[2]] [(4,3+,4,3+)] File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png 6 forms
H8 0.3586534401 BH^3 [(3,4,3,5)] [(3,4,3,5)]+ File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png 9 forms
H9 0.5021308905 HH^3 [(5,3)[2]] [(5,3)[2]]+ File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png 6 forms

There are just two radical subgroups with non-simplicial domains that can be generated by removing a set of two or more mirrors separated by all other mirrors by even-order branches. One is [(4,3,4,3*)], represented by Coxeter diagrams File:CDel branch c1-2.pngFile:CDel 4a4b.pngFile:CDel branch.pngFile:CDel labels.png an index 6 subgroup with a trigonal trapezohedron fundamental domainFile:CDel node c1.pngFile:CDel splitplit1u.pngFile:CDel branch3u c2.pngFile:CDel 3a3buc-cross.pngFile:CDel branch3u c1.pngFile:CDel splitplit2u.pngFile:CDel node c2.png, which can be extended by restoring one mirror as File:CDel branchu c1-2.pngFile:CDel 3ab.pngFile:CDel branch c2-1.pngFile:CDel split2-44.pngFile:CDel node.png. The other is [4,(3,5)*], index 120 with a dodecahedral fundamental domain.

Paracompact hyperbolic uniform honeycombs

There are also 23 paracompact Coxeter groups of rank 4 that produce paracompact uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity.

Hyperbolic paracompact group summary
Type Coxeter groups
Linear graphs File:CDel node.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png | File:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 6.pngFile:CDel node.png
Tridental graphs File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1-44.pngFile:CDel nodes.png | File:CDel node.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.png | File:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel split1-44.pngFile:CDel nodes.png
Cyclic graphs File:CDel label6.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel 2.png | File:CDel label6.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png | File:CDel label4.pngFile:CDel branch.pngFile:CDel 4-4.pngFile:CDel branch.png | File:CDel label6.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png | File:CDel label6.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label6.png | File:CDel label4.pngFile:CDel branch.pngFile:CDel 4-4.pngFile:CDel branch.pngFile:CDel label4.png | File:CDel node.pngFile:CDel split1-44.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png | File:CDel node.pngFile:CDel split1.pngFile:CDel branch.pngFile:CDel split2.pngFile:CDel node.png | File:CDel branch.pngFile:CDel splitcross.pngFile:CDel branch.png
Loop-n-tail graphs File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branch.png | File:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branch.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branch.png | File:CDel node.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branch.png

Other paracompact Coxeter groups exists as Vinberg polytope fundamental domains, including these triangular bipyramid fundamental domains (double tetrahedra) as rank 5 graphs including parallel mirrors. Uniform honeycombs exist as all permutations of rings in these graphs, with the constraint that at least one node must be ringed across infinite order branches.

Dimension Rank Graphs
H3 5
File:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 2a2b-cross.pngFile:CDel nodes.png, File:CDel node.pngFile:CDel split1-43.pngFile:CDel nodes.pngFile:CDel 2a2b-cross.pngFile:CDel nodes.png, File:CDel node.pngFile:CDel split1-44.pngFile:CDel nodes.pngFile:CDel 2a2b-cross.pngFile:CDel nodes.png, File:CDel node.pngFile:CDel split1-53.pngFile:CDel nodes.pngFile:CDel 2a2b-cross.pngFile:CDel nodes.png, File:CDel node.pngFile:CDel split1-63.pngFile:CDel nodes.pngFile:CDel 2a2b-cross.pngFile:CDel nodes.png
File:CDel branchu.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-43.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-43.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-44.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-44.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png
File:CDel branchu.pngFile:CDel split2-53.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-54.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-55.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-63.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-64.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-65.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png, File:CDel branchu.pngFile:CDel split2-66.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel ultra.pngFile:CDel node.png
File:CDel branchu.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-43.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-53.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-44.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-43.pngFile:CDel node.pngFile:CDel split1-43.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-44.pngFile:CDel node.pngFile:CDel split1-43.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-44.pngFile:CDel node.pngFile:CDel split1-44.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-54.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-55.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-63.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-64.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-65.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png, File:CDel branchu.pngFile:CDel split2-66.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel branchu.png

[3,5,3] family

There are 9 forms, generated by ring permutations of the Coxeter group: [3,5,3] or File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png One related non-wythoffian form is constructed from the {3,5,3} vertex figure with 4 (tetrahedrally arranged) vertices removed, creating pentagonal antiprisms and dodecahedra filling in the gaps, called a tetrahedrally diminished dodecahedron.[3] Another is constructed with 2 antipodal vertices removed.[4] The bitruncated and runcinated forms (5 and 6) contain the faces of two regular skew polyhedrons: {4,10|3} and {10,4|3}.

# Honeycomb name
Coxeter diagram
and Schläfli
symbols
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
File:CDel node n2.pngFile:CDel 5.pngFile:CDel node n3.pngFile:CDel 3.pngFile:CDel node n4.png
1
File:CDel node n1.pngFile:CDel 2.pngFile:CDel 2.pngFile:CDel node n3.pngFile:CDel 3.pngFile:CDel node n4.png
2
File:CDel node n1.pngFile:CDel 3.pngFile:CDel node n2.pngFile:CDel 2.pngFile:CDel node n4.png
3
File:CDel node n1.pngFile:CDel 3.pngFile:CDel node n2.pngFile:CDel 5.pngFile:CDel node n3.png
1 icosahedral (ikhon)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
t0{3,5,3}
      (12)
File:Icosahedron.png
(3.3.3.3.3)
File:Order-3 icosahedral honeycomb verf.svg File:H3 353 CC center.png
2 rectified icosahedral (rih)
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
t1{3,5,3}
(2)
File:Dodecahedron.png
(5.5.5)
    (3)
File:Icosidodecahedron.png
(3.5.3.5)
File:Rectified icosahedral honeycomb verf.png File:H3 353 CC center 0100.png
3 truncated icosahedral (tih)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
t0,1{3,5,3}
(1)
File:Dodecahedron.png
(5.5.5)
    (3)
File:Truncated icosahedron.png
(5.6.6)
File:Truncated icosahedral honeycomb verf.png File:H3 353-0011 center ultrawide.png
4 cantellated icosahedral (srih)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
t0,2{3,5,3}
(1)
File:Icosidodecahedron.png
(3.5.3.5)
(2)
File:Triangular prism.png
(4.4.3)
  (2)
File:Small rhombicosidodecahedron.png
(3.5.4.5)
File:Cantellated icosahedral honeycomb verf.png File:H3 353-1010 center ultrawide.png
5 runcinated icosahedral (spiddih)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png
t0,3{3,5,3}
(1)
File:Icosahedron.png
(3.3.3.3.3)
(5)
File:Triangular prism.png
(4.4.3)
(5)
File:Triangular prism.png
(4.4.3)
(1)
File:Icosahedron.png
(3.3.3.3.3)
File:Runcinated icosahedral honeycomb verf.png File:H3 353-1001 center ultrawide.png
6 bitruncated icosahedral (dih)
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
t1,2{3,5,3}
(2)
File:Truncated dodecahedron.png
(3.10.10)
    (2)
File:Truncated dodecahedron.png
(3.10.10)
File:Bitruncated icosahedral honeycomb verf.png File:H3 353-0110 center ultrawide.png
7 cantitruncated icosahedral (grih)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
t0,1,2{3,5,3}
(1)
File:Truncated dodecahedron.png
(3.10.10)
(1)
File:Triangular prism.png
(4.4.3)
  (2)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Cantitruncated icosahedral honeycomb verf.png File:H3 353-1110 center ultrawide.png
8 runcitruncated icosahedral (prih)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png
t0,1,3{3,5,3}
(1)
File:Small rhombicosidodecahedron.png
(3.5.4.5)
(1)
File:Triangular prism.png
(4.4.3)
(2)
File:Hexagonal prism.png
(4.4.6)
(1)
File:Truncated icosahedron.png
(5.6.6)
File:Runcitruncated icosahedral honeycomb verf.png File:H3 353-1101 center ultrawide.png
9 omnitruncated icosahedral (gipiddih)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png
t0,1,2,3{3,5,3}
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Hexagonal prism.png
(4.4.6)
(1)
File:Hexagonal prism.png
(4.4.6)
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Omnitruncated icosahedral honeycomb verf.png File:H3 353-1111 center ultrawide.png
# Honeycomb name
Coxeter diagram
and Schläfli
symbols
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
File:CDel node n2.pngFile:CDel 5.pngFile:CDel node n3.pngFile:CDel 3.pngFile:CDel node n4.png
1
File:CDel node n1.pngFile:CDel 2.pngFile:CDel 2.pngFile:CDel node n3.pngFile:CDel 3.pngFile:CDel node n4.png
2
File:CDel node n1.pngFile:CDel 3.pngFile:CDel node n2.pngFile:CDel 2.pngFile:CDel node n4.png
3
File:CDel node n1.pngFile:CDel 3.pngFile:CDel node n2.pngFile:CDel 5.pngFile:CDel node n3.png
Alt
[77] partially diminished icosahedral (pidih)
pd{3,5,3}[5]
(12)
File:Pentagonal antiprism.png
(3.3.3.5)
(4)
File:Dodecahedron.png
(5.5.5)
File:Partial truncation order-3 icosahedral honeycomb verf.png File:H3 353-pd center ultrawide.png
[78] semi-partially diminished icosahedral
spd{3,5,3}[4]
(6)
File:Pentagonal antiprism.png
(3.3.3.5)
(6)
File:Icosahedron.png
(3.3.3.3.3)
(2)
File:Dodecahedron.png
(5.5.5)
Nonuniform omnisnub icosahedral (snih)
File:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.png
ht0,1,2,3{3,5,3}
(1)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
File:Octahedron.png
(3.3.3.3
(1)
File:Octahedron.png
(3.3.3.3)
(1)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub icosahedral honeycomb verf.png

[5,3,4] family

There are 15 forms, generated by ring permutations of the Coxeter group: [5,3,4] or File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png. This family is related to the group [5,31,1] by a half symmetry [5,3,4,1+], or File:CDel node c1.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel split1.pngFile:CDel nodeab c3.pngFile:CDel node c1.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel 3.pngFile:CDel node c3.pngFile:CDel 4.pngFile:CDel node h0.png, when the last mirror after the order-4 branch is inactive, or as an alternation if the third mirror is inactive File:CDel node c1.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel split1.pngFile:CDel nodes 10lu.pngFile:CDel node c1.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.png.

# Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
File:CDel node n2.pngFile:CDel 3.pngFile:CDel node n3.pngFile:CDel 4.pngFile:CDel node n4.png
1
File:CDel node n1.pngFile:CDel 2.pngFile:CDel node n3.pngFile:CDel 4.pngFile:CDel node n4.png
2
File:CDel node n1.pngFile:CDel 5.pngFile:CDel node n2.pngFile:CDel 2.pngFile:CDel node n4.png
3
File:CDel node n1.pngFile:CDel 5.pngFile:CDel node n2.pngFile:CDel 3.pngFile:CDel node n3.png
10 order-4 dodecahedral (doehon)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.png
- - - (8)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
File:Dodecahedron.png
(5.5.5)
File:Order-4 dodecahedral honeycomb verf.png File:H3 534 CC center.png
11 rectified order-4 dodecahedral (riddoh)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.png
(2)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png
File:Octahedron.png
(3.3.3.3)
- - (4)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Icosidodecahedron.png
(3.5.3.5)
File:Rectified order-4 dodecahedral honeycomb verf.png File:H3 534 CC center 0100.png
12 rectified order-5 cubic (ripech)
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
(5)
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:Cuboctahedron.png
(3.4.3.4)
- - (2)
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png
File:Icosahedron.png
(3.3.3.3.3)
File:Rectified order-5 cubic honeycomb verf.png File:H3 435 CC center 0100.png
13 order-5 cubic (pechon)
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
(20)
File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
File:Hexahedron.png
(4.4.4)
- - - File:Order-5 cubic honeycomb verf.svg File:H3 435 CC center.png
14 truncated order-4 dodecahedral (tiddoh)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.png
(1)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png
File:Octahedron.png
(3.3.3.3)
- - (4)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Truncated dodecahedron.png
(3.10.10)
File:Truncated order-4 dodecahedral honeycomb verf.png File:H3 435-0011 center ultrawide.png
15 bitruncated order-5 cubic (ciddoh)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
(2)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:Truncated octahedron.png
(4.6.6)
- - (2)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png
File:Truncated icosahedron.png
(5.6.6)
File:Bitruncated order-5 cubic honeycomb verf.png File:H3 534-0110 center ultrawide.png
16 truncated order-5 cubic (tipech)
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
(5)
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:Truncated hexahedron.png
(3.8.8)
- - (1)
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png
File:Icosahedron.png
(3.3.3.3.3)
File:Truncated order-5 cubic honeycomb verf.png File:H3 534-0011 center ultrawide.png
17 cantellated order-4 dodecahedral (sriddoh)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
(1)
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:Cuboctahedron.png
(3.4.3.4)
(2)
File:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:Tetragonal prism.png
(4.4.4)
- (2)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png
File:Small rhombicosidodecahedron.png
(3.4.5.4)
File:Cantellated order-4 dodecahedral honeycomb verf.png File:H3 534-1010 center ultrawide.png
18 cantellated order-5 cubic (sripech)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
(2)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
File:Small rhombicuboctahedron.png
(3.4.4.4)
- (2)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.png
File:Pentagonal prism.png
(4.4.5)
(1)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Icosidodecahedron.png
(3.5.3.5)
File:Cantellated order-5 cubic honeycomb verf.png File:H3 534-0101 center ultrawide.png
19 runcinated order-5 cubic (sidpicdoh)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
(1)
File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
File:Hexahedron.png
(4.4.4)
(3)
File:CDel node 1.pngFile:CDel 2.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
File:Tetragonal prism.png
(4.4.4)
(3)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 2.pngFile:CDel node 1.png
File:Pentagonal prism.png
(4.4.5)
(1)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
File:Dodecahedron.png
(5.5.5)
File:Runcinated order-5 cubic honeycomb verf.png File:H3 534-1001 center ultrawide.png
20 cantitruncated order-4 dodecahedral (griddoh)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
(1)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:Truncated octahedron.png
(4.6.6)
(1)
File:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:Tetragonal prism.png
(4.4.4)
- (2)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Cantitruncated order-4 dodecahedral honeycomb verf.png File:H3 534-1110 center ultrawide.png
21 cantitruncated order-5 cubic (gripech)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
(2)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:Great rhombicuboctahedron.png
(4.6.8)
- (1)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.png
File:Pentagonal prism.png
(4.4.5)
(1)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png
File:Truncated icosahedron.png
(5.6.6)
File:Cantitruncated order-5 cubic honeycomb verf.png File:H3 534-0111 center ultrawide.png
22 runcitruncated order-4 dodecahedral (pripech)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
(1)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
File:Small rhombicuboctahedron.png
(3.4.4.4)
(1)
File:CDel node 1.pngFile:CDel 2.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png
File:Tetragonal prism.png
(4.4.4)
(2)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.png
File:Decagonal prism.png
(4.4.10)
(1)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png
File:Truncated dodecahedron.png
(3.10.10)
File:Runcitruncated order-4 dodecahedral honeycomb verf.png File:H3 534-1101 center ultrawide.png
23 runcitruncated order-5 cubic (priddoh)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
(1)
File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:Truncated hexahedron.png
(3.8.8)
(2)
File:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:Octagonal prism.png
(4.4.8)
(1)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 2.pngFile:CDel node 1.png
File:Pentagonal prism.png
(4.4.5)
(1)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png
File:Small rhombicosidodecahedron.png
(3.4.5.4)
File:Runcitruncated order-5 cubic honeycomb verf.png File:H3 534-1011 center ultrawide.png
24 omnitruncated order-5 cubic (gidpicdoh)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
(1)
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:Great rhombicuboctahedron.png
(4.6.8)
(1)
File:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:Octagonal prism.png
(4.4.8)
(1)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.png
File:Decagonal prism.png
(4.4.10)
(1)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Omnitruncated order-4 dodecahedral honeycomb verf.png File:H3 534-1111 center ultrawide.png
# Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
File:CDel node n2.pngFile:CDel 3.pngFile:CDel node n3.pngFile:CDel 4.pngFile:CDel node n4.png
1
File:CDel node n1.pngFile:CDel 2.pngFile:CDel node n3.pngFile:CDel 4.pngFile:CDel node n4.png
2
File:CDel node n1.pngFile:CDel 5.pngFile:CDel node n2.pngFile:CDel 2.pngFile:CDel node n4.png
3
File:CDel node n1.pngFile:CDel 5.pngFile:CDel node n2.pngFile:CDel 3.pngFile:CDel node n3.png
Alt
[34] alternated order-5 cubic (apech)
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 10lu.png
(20)
File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.png
File:Tetrahedron.png
(3.3.3)
    (12)
File:Icosahedron.png
(3.3.3.3.3)
File:Alternated order-5 cubic honeycomb verf.png File:Alternated order 5 cubic honeycomb.png
[35] cantic order-5 cubic (tapech)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 10lu.png
(1)
File:Icosidodecahedron.png
(3.5.3.5)
- (2)
File:Truncated icosahedron.png
(5.6.6)
(2)
File:Truncated tetrahedron.png
(3.6.6)
File:Truncated alternated order-5 cubic honeycomb verf.png File:H3 5311-0110 center ultrawide.png
[36] runcic order-5 cubic (birapech)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 10lu.png
(1)
File:Dodecahedron.png
(5.5.5)
- (3)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
File:Tetrahedron.png
(3.3.3)
File:Runcinated alternated order-5 cubic honeycomb verf.png File:H3 5311-1010 center ultrawide.png
[37] runcicantic order-5 cubic (bitapech)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 10lu.png
(1)
File:Truncated dodecahedron.png
(3.10.10)
- (2)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Truncated tetrahedron.png
(3.6.6)
File:Runcitruncated alternated order-5 cubic honeycomb verf.png File:H3 5311-1110 center ultrawide.png
Nonuniform snub rectified order-4 dodecahedral
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node.png
(1)
File:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node.png
File:Uniform polyhedron-43-h01.svg
(3.3.3.3.3)
(1)
File:CDel node h.pngFile:CDel 2x.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node.png
File:Tetrahedron.png
(3.3.3)
- (2)
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.png
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Alternated cantitruncated order-4 dodecahedral honeycomb verf.png
Irr. tridiminished icosahedron
Nonuniform runcic snub rectified order-4 dodecahedral
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node 1.png
File:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node 1.png
File:Rhombicuboctahedron uniform edge coloring.png
(3.4.4.4)
File:CDel node h.pngFile:CDel 2x.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node 1.png
File:Cube rotorotational symmetry.png
(4.4.4.4)
- File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.png
File:Snub dodecahedron cw.png
(3.3.3.3.5)
File:Tetrahedron.png
+(3.3.3)
Nonuniform omnisnub order-5 cubic
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node h.png
(1)
File:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node h.png
File:Snub hexahedron.png
(3.3.3.3.4)
(1)
File:CDel node h.pngFile:CDel 2x.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node h.png
File:Square antiprism.png
(3.3.3.4)
(1)
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 2x.pngFile:CDel node h.png
File:Pentagonal antiprism.png
(3.3.3.5)
(1)
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.png
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub order-4 dodecahedral honeycomb verf.png

[5,3,5] family

There are 9 forms, generated by ring permutations of the Coxeter group: [5,3,5] or File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png The bitruncated and runcinated forms (29 and 30) contain the faces of two regular skew polyhedrons: {4,6|5} and {6,4|5}.

# Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
1
File:CDel node.pngFile:CDel 2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
2
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 2.pngFile:CDel node.png
3
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
25 (Regular) Order-5 dodecahedral (pedhon)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
t0{5,3,5}
      (20)
File:Dodecahedron.png
(5.5.5)
File:Order-5 dodecahedral honeycomb verf.png File:H3 535 CC center.png
26 rectified order-5 dodecahedral (ripped)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
t1{5,3,5}
(2)
File:Icosahedron.png
(3.3.3.3.3)
    (5)
File:Icosidodecahedron.png
(3.5.3.5)
File:Rectified order-5 dodecahedral honeycomb verf.png File:H3 535 CC center 0100.png
27 truncated order-5 dodecahedral (tipped)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
t0,1{5,3,5}
(1)
File:Icosahedron.png
(3.3.3.3.3)
    (5)
File:Truncated dodecahedron.png
(3.10.10)
File:Truncated order-5 dodecahedral honeycomb verf.png File:H3 535-0011 center ultrawide.png
28 cantellated order-5 dodecahedral (sripped)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png
t0,2{5,3,5}
(1)
File:Icosidodecahedron.png
(3.5.3.5)
(2)
File:Pentagonal prism.png
(4.4.5)
  (2)
File:Small rhombicosidodecahedron.png
(3.5.4.5)
File:Cantellated order-5 dodecahedral honeycomb verf.png File:H3 535-1010 center ultrawide.png
29 Runcinated order-5 dodecahedral (spidded)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.png
t0,3{5,3,5}
(1)
File:Dodecahedron.png
(5.5.5)
(3)
File:Pentagonal prism.png
(4.4.5)
(3)
File:Pentagonal prism.png
(4.4.5)
(1)
File:Dodecahedron.png
(5.5.5)
File:Runcinated order-5 dodecahedral honeycomb verf.png File:H3 535-1001 center ultrawide.png
30 bitruncated order-5 dodecahedral (diddoh)
File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png
t1,2{5,3,5}
(2)
File:Truncated icosahedron.png
(5.6.6)
    (2)
File:Truncated icosahedron.png
(5.6.6)
File:Bitruncated order-5 dodecahedral honeycomb verf.png File:H3 535-0110 center ultrawide.png
31 cantitruncated order-5 dodecahedral (gripped)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png
t0,1,2{5,3,5}
(1)
File:Truncated icosahedron.png
(5.6.6)
(1)
File:Pentagonal prism.png
(4.4.5)
  (2)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Cantitruncated order-5 dodecahedral honeycomb verf.png File:H3 535-1110 center ultrawide.png
32 runcitruncated order-5 dodecahedral (pripped)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.png
t0,1,3{5,3,5}
(1)
File:Small rhombicosidodecahedron.png
(3.5.4.5)
(1)
File:Pentagonal prism.png
(4.4.5)
(2)
File:Decagonal prism.png
(4.4.10)
(1)
File:Truncated dodecahedron.png
(3.10.10)
File:Runcitruncated order-5 dodecahedral honeycomb verf.png File:H3 535-1101 center ultrawide.png
33 omnitruncated order-5 dodecahedral (gipidded)
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.png
t0,1,2,3{5,3,5}
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Decagonal prism.png
(4.4.10)
(1)
File:Decagonal prism.png
(4.4.10)
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Omnitruncated order-5 dodecahedral honeycomb verf.png File:H3 535-1111 center ultrawide.png
# Name of honeycomb
Coxeter diagram
Cells by location and count per vertex Vertex figure Picture
0
File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
1
File:CDel node.pngFile:CDel 2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
2
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 2.pngFile:CDel node.png
3
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
Alt
Nonuniform omnisnub order-5 dodecahedral
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.png
ht0,1,2,3{5,3,5}
(1)
File:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.png
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
File:CDel node h.pngFile:CDel 2x.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.png
File:Pentagonal antiprism.png
(3.3.3.5)
(1)
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 2x.pngFile:CDel node h.png
File:Pentagonal antiprism.png
(3.3.3.5)
(1)
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.png
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub order-5 dodecahedral honeycomb verf.png

[5,31,1] family

There are 11 forms (and only 4 not shared with [5,3,4] family), generated by ring permutations of the Coxeter group: [5,31,1] or File:CDel nodes.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png. If the branch ring states match, an extended symmetry can double into the [5,3,4] family, File:CDel nodeab c1.pngFile:CDel split2.pngFile:CDel node c2.pngFile:CDel 5.pngFile:CDel node c3.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node c1.pngFile:CDel 3.pngFile:CDel node c2.pngFile:CDel 5.pngFile:CDel node c3.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 5a.pngFile:CDel nodea.png
1
File:CDel nodes.pngFile:CDel 2.pngFile:CDel node.png
0'
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 5a.pngFile:CDel nodea.png
3
File:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png
34 alternated order-5 cubic (apech)
File:CDel nodes 10ru.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel node h1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
- - (12)
File:Icosahedron.png
(3.3.3.3.3)
(20)
File:Tetrahedron.png
(3.3.3)
File:Alternated order-5 cubic honeycomb verf.png File:Alternated order 5 cubic honeycomb.png
35 cantic order-5 cubic (tapech)
File:CDel nodes 10ru.pngFile:CDel split2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel node h1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png
(1)
File:Icosidodecahedron.png
(3.5.3.5)
- (2)
File:Truncated icosahedron.png
(5.6.6)
(2)
File:Truncated tetrahedron.png
(3.6.6)
File:Truncated alternated order-5 cubic honeycomb verf.png File:H3 5311-0110 center ultrawide.png
36 runcic order-5 cubic (birapech)
File:CDel nodes 10ru.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel node h1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.png
(1)
File:Dodecahedron.png
(5.5.5)
- (3)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
File:Tetrahedron.png
(3.3.3)
File:Runcinated alternated order-5 cubic honeycomb verf.png File:H3 5311-1010 center ultrawide.png
37 runcicantic order-5 cubic (bitapech)
File:CDel nodes 10ru.pngFile:CDel split2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel node h1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.png
(1)
File:Truncated dodecahedron.png
(3.10.10)
- (2)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Truncated tetrahedron.png
(3.6.6)
File:Runcitruncated alternated order-5 cubic honeycomb verf.png File:H3 5311-1110 center ultrawide.png
# Honeycomb name
Coxeter diagram
File:CDel nodeab c1.pngFile:CDel split2.pngFile:CDel node c2.pngFile:CDel 5.pngFile:CDel node c3.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node c1.pngFile:CDel 3.pngFile:CDel node c2.pngFile:CDel 5.pngFile:CDel node c3.png
Cells by location
(and count around each vertex)
vertex figure Picture
0
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 5a.pngFile:CDel nodea.png
1
File:CDel nodes.pngFile:CDel 2.pngFile:CDel node.png
3
File:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png
Alt
[10] Order-4 dodecahedral (doehon)
File:CDel nodes.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.png
(4)
File:Dodecahedron.png
(5.5.5)
- - File:Order-4 dodecahedral honeycomb verf.png File:H3 534 CC center.png
[11] rectified order-4 dodecahedral (riddoh)
File:CDel nodes.pngFile:CDel split2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png
(2)
File:Icosidodecahedron.png
(3.5.3.5)
- (2)
File:Uniform polyhedron-33-t1.svg
(3.3.3.3)
File:Rectified alternated order-5 cubic honeycomb verf.png File:H3 534 CC center 0100.png
[12] rectified order-5 cubic (ripech)
File:CDel nodes 11.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
(1)
File:Icosahedron.png
(3.3.3.3.3)
- (5)
File:Uniform polyhedron-33-t02.png
(3.4.3.4)
File:Cantellated alternated order-5 cubic honeycomb verf.png File:H3 435 CC center 0100.png
[15] bitruncated order-5 cubic (ciddoh)
File:CDel nodes 11.pngFile:CDel split2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png
(1)
File:Truncated icosahedron.png
(5.6.6)
- (2)
File:Uniform polyhedron-33-t012.png
(4.6.6)
File:Cantitruncated alternated order-5 cubic honeycomb verf.png File:H3 534-0110 center ultrawide.png
[14] truncated order-4 dodecahedral (tiddoh)
File:CDel nodes.pngFile:CDel split2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.png
(2)
File:Truncated dodecahedron.png
(3.10.10)
- (1)
File:Uniform polyhedron-33-t1.svg
(3.3.3.3)
File:Bicantellated alternated order-5 cubic honeycomb verf.png File:H3 435-0011 center ultrawide.png
[17] cantellated order-4 dodecahedral (sriddoh)
File:CDel nodes 11.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.png
(1)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
(2)
File:Uniform polyhedron 222-t012.png
(4.4.4)
(1)
File:Uniform polyhedron-33-t02.png
(3.4.3.4)
File:Runcicantellated alternated order-5 cubic honeycomb verf.png File:H3 534-1010 center ultrawide.png
[20] cantitruncated order-4 dodecahedral (griddoh)
File:CDel nodes 11.pngFile:CDel split2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.png
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Uniform polyhedron 222-t012.png
(4.4.4)
(1)
File:Uniform polyhedron-33-t012.png
(4.6.6)
File:Omnitruncated alternated order-5 cubic honeycomb verf.png File:H3 534-1110 center ultrawide.png
Nonuniform snub rectified order-4 dodecahedral
File:CDel nodes hh.pngFile:CDel split2.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel node h0.pngFile:CDel 4.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.png
(2)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
File:Uniform polyhedron-33-t0.png
(3.3.3)
(2)
File:Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(4)
File:Uniform polyhedron-33-t2.png
+(3.3.3)
File:Alternated cantitruncated order-4 dodecahedral honeycomb verf.png
Irr. tridiminished icosahedron

[(4,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.png The bitruncated and runcinated forms (41 and 42) contain the faces of two regular skew polyhedrons: {8,6|3} and {6,8|3}.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.png
1
File:CDel nodeb.pngFile:CDel 3b.pngFile:CDel branch.png
2
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
3
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.png
Alt
38 tetrahedral-cubic (gadtatdic)
File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.png
{(3,3,3,4)}
(4)
File:Tetrahedron.png
(3.3.3)
- (4)
File:Hexahedron.png
(4.4.4)
(6)
File:Cuboctahedron.png
(3.4.3.4)
File:Uniform t0 4333 honeycomb verf.png File:H3 4333-1000 center ultrawide.png
39 tetrahedral-octahedral (gacocaddit)
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
{(3,3,4,3)}
(12)
File:Uniform polyhedron-33-t1.svg
(3.3.3.3)
(8)
File:Tetrahedron.png
(3.3.3)
- (8)
File:Octahedron.png
(3.3.3.3)
File:Uniform t2 4333 honeycomb verf.png File:H3 4333-0100 center ultrawide.png
40 cyclotruncated tetrahedral-cubic (cytitch)
File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
ct{(3,3,3,4)}
(3)
File:Truncated tetrahedron.png
(3.6.6)
(1)
File:Tetrahedron.png
(3.3.3)
(1)
File:Hexahedron.png
(4.4.4)
(3)
File:Truncated octahedron.png
(4.6.6)
File:Uniform t12 4333 honeycomb verf.png File:H3 4333-0110 center ultrawide.png
41 cyclotruncated cube-tetrahedron (cyticth)
File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.png
ct{(4,3,3,3)}
(1)
File:Tetrahedron.png
(3.3.3)
(1)
File:Tetrahedron.png
(3.3.3)
(3)
File:Truncated hexahedron.png
(3.8.8)
(3)
File:Truncated hexahedron.png
(3.8.8)
File:Uniform t01 4333 honeycomb verf.png File:H3 4333-1100 center ultrawide.png
42 cyclotruncated octahedral-tetrahedral (cytoth)
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 11.png
ct{(3,3,4,3)}
(4)
File:Truncated tetrahedron.png
(3.6.6)
(4)
File:Truncated tetrahedron.png
(3.6.6)
(1)
File:Octahedron.png
(3.3.3.3)
(1)
File:Octahedron.png
(3.3.3.3)
File:Uniform t23 4333 honeycomb verf.png File:H3 4333-0011 center ultrawide.png
43 rectified tetrahedral-cubic (ritch)
File:CDel label4.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
r{(3,3,3,4)}
(1)
File:Uniform polyhedron-33-t1.svg
(3.3.3.3)
(2)
File:Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
File:Cuboctahedron.png
(3.4.3.4)
(2)
File:Small rhombicuboctahedron.png
(3.4.4.4)
File:Uniform t02 4333 honeycomb verf.png File:H3 4333-1010 center ultrawide.png
44 truncated tetrahedral-cubic (titch)
File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
t{(3,3,3,4)}
(1)
File:Truncated tetrahedron.png
(3.6.6)
(1)
File:Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
File:Truncated hexahedron.png
(3.8.8)
(2)
File:Great rhombicuboctahedron.png
(4.6.8)
File:Uniform t012 4333 honeycomb verf.png File:H3 4333-1110 center ultrawide.png
45 truncated tetrahedral-octahedral (titdoh)
File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 11.png
t{(3,3,4,3)}
(2)
File:Uniform polyhedron-33-t012.png
(4.6.6)
(1)
File:Truncated tetrahedron.png
(3.6.6)
(1)
File:Small rhombicuboctahedron.png
(3.4.4.4)
(1)
File:Truncated octahedron.png
(4.6.6)
File:Uniform t123 4333 honeycomb verf.png File:H3 4333-0111 center ultrawide.png
46 omnitruncated tetrahedral-cubic (otitch)
File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.png
tr{(3,3,3,4)}
(1)
File:Uniform polyhedron-33-t012.png
(4.6.6)
(1)
File:Uniform polyhedron-33-t012.png
(4.6.6)
(1)
File:Great rhombicuboctahedron.png
(4.6.8)
(1)
File:Great rhombicuboctahedron.png
(4.6.8)
File:Uniform t0123 4333 honeycomb verf.png File:H3 4333-1111 center ultrawide.png
Nonuniform omnisnub tetrahedral-cubic
File:CDel label4.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.png
sr{(3,3,3,4)}
(1)
File:Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(1)
File:Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(1)
File:Snub hexahedron.png
(3.3.3.3.4)
(1)
File:Snub hexahedron.png
(3.3.3.3.4)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub 4333 honeycomb verf.png

[(5,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.png The bitruncated and runcinated forms (50 and 51) contain the faces of two regular skew polyhedrons: {10,6|3} and {6,10|3}.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.png
1
File:CDel nodeb.pngFile:CDel 3b.pngFile:CDel branch.png
2
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
3
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.png
47 tetrahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.png
(4)
File:Tetrahedron.png
(3.3.3)
- (4)
File:Dodecahedron.png
(5.5.5)
(6)
File:Icosidodecahedron.png
(3.5.3.5)
File:Uniform t0 5333 honeycomb verf.png File:H3 5333-1000 center ultrawide.png
48 tetrahedral-icosahedral
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
(30)
File:Uniform polyhedron-33-t1.svg
(3.3.3.3)
(20)
File:Tetrahedron.png
(3.3.3)
- (12)
File:Icosahedron.png
(3.3.3.3.3)
File:Uniform t2 5333 honeycomb verf.png File:H3 5333-0010 center ultrawide.png
49 cyclotruncated tetrahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
(3)
File:Truncated tetrahedron.png
(3.6.6)
(1)
File:Tetrahedron.png
(3.3.3)
(1)
File:Dodecahedron.png
(5.5.5)
(3)
File:Truncated icosahedron.png
(5.6.6)
File:Uniform t12 5333 honeycomb verf.png File:H3 5333-0110 center ultrawide.png
52 rectified tetrahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
(1)
File:Uniform polyhedron-33-t1.svg
(3.3.3.3)
(2)
File:Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
File:Icosidodecahedron.png
(3.5.3.5)
(2)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
File:Uniform t02 5333 honeycomb verf.png File:H3 5333-1010 center ultrawide.png
53 truncated tetrahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.png
(1)
File:Truncated tetrahedron.png
(3.6.6)
(1)
File:Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
File:Truncated dodecahedron.png
(3.10.10)
(2)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Uniform t012 5333 honeycomb verf.png File:H3 5333-1110 center ultrawide.png
54 truncated tetrahedral-icosahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 11.png
(2)
File:Uniform polyhedron-33-t012.png
(4.6.6)
(1)
File:Truncated tetrahedron.png
(3.6.6)
(1)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
File:Truncated icosahedron.png
(5.6.6)
File:Uniform t123 5333 honeycomb verf.png File:H3 5333-0111 center ultrawide.png
# Honeycomb name
Coxeter diagram
File:CDel label5.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,1
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.png
2,3
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
Alt
50 cyclotruncated dodecahedral-tetrahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.png
(2)
File:Tetrahedron.png
(3.3.3)
(6)
File:Truncated dodecahedron.png
(3.10.10)
File:Uniform t01 5333 honeycomb verf.png File:H3 5333-1100 center ultrawide.png
51 cyclotruncated tetrahedral-icosahedral
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 11.png
(10)
File:Truncated tetrahedron.png
(3.6.6)
(2)
File:Icosahedron.png
(3.3.3.3.3)
File:Uniform t23 5333 honeycomb verf.png File:H3 5333-0011 center ultrawide.png
55 omnitruncated tetrahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.png
(2)
File:Uniform polyhedron-33-t012.png
(4.6.6)
(2)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Uniform t0123 5333 honeycomb verf.png File:H3 5333-1111 center ultrawide.png
Nonuniform omnisnub tetrahedral-dodecahedral
File:CDel label5.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.png
(2)
File:Uniform polyhedron-33-s012.png
(3.3.3.3.3)
(2)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub 5333 honeycomb verf.png

[(4,3,4,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png. There are 4 extended symmetries possible based on the symmetry of the rings: File:CDel label4.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c1-2.pngFile:CDel label4.png, File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.pngFile:CDel label4.png, File:CDel label4.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c2-1.pngFile:CDel label4.png, and File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c1.pngFile:CDel label4.png. This symmetry family is also related to a radical subgroup, index 6, File:CDel branch c1-2.pngFile:CDel 4a4b.pngFile:CDel branch.pngFile:CDel labels.pngFile:CDel node c1.pngFile:CDel splitplit1u.pngFile:CDel branch3u c2.pngFile:CDel 3a3buc-cross.pngFile:CDel branch3u c1.pngFile:CDel splitplit2u.pngFile:CDel node c2.png, constructed by [(4,3,4,3*)], and represents a trigonal trapezohedron fundamental domain. The truncated forms (57 and 58) contain the faces of two regular skew polyhedrons: {6,6|4} and {8,8|3}.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Pictures
0
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label4.png
1
File:CDel nodeb.pngFile:CDel 3b.pngFile:CDel branch.pngFile:CDel label4.png
2
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
3
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.png
56 cubic-octahedral (cohon)
File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png
(6)
File:Octahedron.png
(3.3.3.3)
- (8)
File:Hexahedron.png
(4.4.4)
(12)
File:Cuboctahedron.png
(3.4.3.4)
File:Uniform t0 4343 honeycomb verf.png File:H3 4343-1000 center ultrawide.png
60 truncated cubic-octahedral (tucoh)
File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
(1)
File:Truncated octahedron.png
(4.6.6)
(1)
File:Small rhombicuboctahedron.png
(3.4.4.4)
(1)
File:Truncated hexahedron.png
(3.8.8)
(2)
File:Great rhombicuboctahedron.png
(4.6.8)
File:Uniform t012 4343 honeycomb verf.png File:H3 4343-1110 center ultrawide.png
# Honeycomb name
Coxeter diagram
File:CDel label4.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c1-2.pngFile:CDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,3
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label4.png
1,2
File:CDel nodeb.pngFile:CDel 3b.pngFile:CDel branch.pngFile:CDel label4.png
Alt
57 cyclotruncated octahedral-cubic (cytoch)
File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
(6)
File:Truncated octahedron.png
(4.6.6)
(2)
File:Hexahedron.png
(4.4.4)
File:Uniform t12 4343 honeycomb verf.png File:H3 4343-0110 center ultrawide.png
Nonuniform cyclosnub octahedral-cubic
File:CDel label4.pngFile:CDel branch h0r.pngFile:CDel 3ab.pngFile:CDel branch h0l.pngFile:CDel label4.png
(4)
File:Uniform polyhedron-43-h01.png
(3.3.3.3.3)
(2)
File:Tetrahedron.png
(3.3.3)
(4)
File:Octahedron.png
+(3.3.3.3)
File:Cyclosnub cubic-octahedral honeycomb vertex figure.png
# Honeycomb name
Coxeter diagram
File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.pngFile:CDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,1
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label4.png
2,3
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
58 cyclotruncated cubic-octahedral (cytacoh)
File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png
(2)
File:Octahedron.png
(3.3.3.3)
(6)
File:Truncated hexahedron.png
(3.8.8)
File:Uniform t01 4343 honeycomb verf.png File:H3 4343-1100 center ultrawide.png
# Honeycomb name
Coxeter diagram
File:CDel label4.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c2-1.pngFile:CDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,2
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label4.png
1,3
File:CDel nodeb.pngFile:CDel 3b.pngFile:CDel branch.pngFile:CDel label4.png
59 rectified cubic-octahedral (racoh)
File:CDel label4.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
(2)
File:Cuboctahedron.png
(3.4.3.4)
(4)
File:Small rhombicuboctahedron.png
(3.4.4.4)
File:Uniform t02 4343 honeycomb verf.png File:H3 4343-1010 center ultrawide.png
# Honeycomb name
Coxeter diagram
File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c1.pngFile:CDel label4.png
Cells by location
(and count around each vertex)
vertex figure Picture
0,1,2,3
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label4.png
Alt
61 omnitruncated cubic-octahedral (otacoh)
File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png
(4)
File:Great rhombicuboctahedron.png
(4.6.8)
File:Uniform t0123 4343 honeycomb verf.png File:H3 4343-1111 center ultrawide.png
Nonuniform omnisnub cubic-octahedral
File:CDel label4.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.pngFile:CDel label4.png
(4)
File:Snub hexahedron.png
(3.3.3.3.4)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub 4343 honeycomb verf.png

[(4,3,5,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png The truncated forms (65 and 66) contain the faces of two regular skew polyhedrons: {10,6|3} and {6,10|3}.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label4.png
1
File:CDel nodeb.pngFile:CDel 3b.pngFile:CDel branch.pngFile:CDel label4.png
2
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
3
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.png
62 octahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png
(6)
File:Octahedron.png
(3.3.3.3)
- (8)
File:Dodecahedron.png
(5.5.5)
(1)
File:Icosidodecahedron.png
(3.5.3.5)
File:Uniform t0 5343 honeycomb verf.png File:H3 4353-0010 center ultrawide.png
63 cubic-icosahedral
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
(30)
File:Cuboctahedron.png
(3.4.3.4)
(20)
File:Hexahedron.png
(4.4.4)
- (12)
File:Icosahedron.png
(3.3.3.3.3)
File:Uniform t2 5343 honeycomb verf.png File:H3 4353-1000 center ultrawide.png
64 cyclotruncated octahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
(3)
File:Truncated octahedron.png
(4.6.6)
(1)
File:Hexahedron.png
(4.4.4)
(1)
File:Dodecahedron.png
(5.5.5)
(3)
File:Truncated icosahedron.png
(5.6.6)
File:Uniform t12 5343 honeycomb verf.png File:H3 4353-0110 center ultrawide.png
67 rectified octahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
(1)
File:Cuboctahedron.png
(3.4.3.4)
(2)
File:Small rhombicuboctahedron.png
(3.4.4.4)
(1)
File:Icosidodecahedron.png
(3.5.3.5)
(2)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
File:Uniform t02 5343 honeycomb verf.png File:H3 4353-0101 center ultrawide.png
68 truncated octahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
(1)
File:Truncated octahedron.png
(4.6.6)
(1)
File:Small rhombicuboctahedron.png
(3.4.4.4)
(1)
File:Truncated dodecahedron.png
(3.10.10)
(2)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Uniform t012 5343 honeycomb verf.png File:H3 4353-1110 center ultrawide.png
69 truncated cubic-dodecahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png
(2)
File:Great rhombicuboctahedron.png
(4.6.8)
(1)
File:Truncated hexahedron.png
(3.8.8)
(1)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
File:Truncated icosahedron.png
(5.6.6)
File:Uniform t123 5343 honeycomb verf.png File:H3 4353-0111 center ultrawide.png
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0,1
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label4.png
2,3
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
Alt
65 cyclotruncated dodecahedral-octahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png
(2)
File:Octahedron.png
(3.3.3.3)
(8)
File:Truncated dodecahedron.png
(3.10.10)
File:Uniform t01 5343 honeycomb verf.png File:H3 4353-1100 center ultrawide.png
66 cyclotruncated cubic-icosahedral
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png
(10)
File:Truncated hexahedron.png
(3.8.8)
(2)
File:Icosahedron.png
(3.3.3.3.3)
File:Uniform t23 5343 honeycomb verf.png File:H3 4353-0011 center ultrawide.png
70 omnitruncated octahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png
(2)
File:Great rhombicuboctahedron.png
(4.6.8)
(2)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Uniform t0123 5343 honeycomb verf.png File:H3 4353-1111 center ultrawide.png
Nonuniform omnisnub octahedral-dodecahedral
File:CDel label5.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.pngFile:CDel label4.png
(2)
File:Snub hexahedron.png
(3.3.3.3.4)
(2)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub 5343 honeycomb verf.png

[(5,3,5,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png. There are 4 extended symmetries possible based on the symmetry of the rings: File:CDel label5.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c1-2.pngFile:CDel label5.png, File:CDel label5.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.pngFile:CDel label5.png, File:CDel label5.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c2-1.pngFile:CDel label5.png, and File:CDel label5.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c1.pngFile:CDel label5.png. The truncated forms (72 and 73) contain the faces of two regular skew polyhedrons: {6,6|5} and {10,10|3}.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel label5.png
1
File:CDel nodeb.pngFile:CDel 3b.pngFile:CDel branch.pngFile:CDel label5.png
2
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3b.pngFile:CDel nodeb.png
3
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.png
Alt
71 dodecahedral-icosahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png
(12)
File:Icosahedron.png
(3.3.3.3.3)
- (20)
File:Dodecahedron.png
(5.5.5)
(30)
File:Icosidodecahedron.png
(3.5.3.5)
File:Uniform t0 5353 honeycomb verf.png File:H3 5353-1000 center ultrawide.png
72 cyclotruncated icosahedral-dodecahedral
File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label5.png
(3)
File:Truncated icosahedron.png
(5.6.6)
(1)
File:Dodecahedron.png
(5.5.5)
(1)
File:Dodecahedron.png
(5.5.5)
(3)
File:Truncated icosahedron.png
(5.6.6)
File:Uniform t12 5353 honeycomb verf.png File:H3 5353-0110 center ultrawide.png
73 cyclotruncated dodecahedral-icosahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png
(1)
File:Icosahedron.png
(3.3.3.3.3)
(1)
File:Icosahedron.png
(3.3.3.3.3)
(3)
File:Truncated dodecahedron.png
(3.10.10)
(3)
File:Truncated dodecahedron.png
(3.10.10)
File:Uniform t01 5353 honeycomb verf.png File:H3 5353-1100 center ultrawide.png
74 rectified dodecahedral-icosahedral
File:CDel label5.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label5.png
(1)
File:Icosidodecahedron.png
(3.5.3.5)
(2)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
File:Icosidodecahedron.png
(3.5.3.5)
(2)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
File:Uniform t02 5353 honeycomb verf.png File:H3 5353-1010 center ultrawide.png
75 truncated dodecahedral-icosahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label5.png
(1)
File:Truncated icosahedron.png
(5.6.6)
(1)
File:Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
File:Truncated dodecahedron.png
(3.10.10)
(2)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Uniform t012 5353 honeycomb verf.png File:H3 5353-1101 center ultrawide.png
76 omnitruncated dodecahedral-icosahedral
File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label5.png
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
(1)
File:Great rhombicosidodecahedron.png
(4.6.10)
File:Uniform t0123 5353 honeycomb verf.png File:H3 5353-1111 center ultrawide.png
Nonuniform omnisnub dodecahedral-icosahedral
File:CDel label5.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.pngFile:CDel label5.png
(1)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(1)
File:Snub dodecahedron cw.png
(3.3.3.3.5)
(4)
File:Tetrahedron.png
+(3.3.3)
File:Snub 5353 honeycomb verf.png

Other non-Wythoffians

There are infinitely many known non-Wythoffian uniform compact hyperbolic honeycombs, and there may be more undiscovered ones. Two have been listed above as diminishings of the icosahedral honeycomb {3,5,3}.[6] In 1997 Wendy Krieger discovered an infinite series of uniform hyperbolic honeycombs with pseudoicosahedral vertex figures, made from 8 cubes and 12 p-gonal prisms at a vertex for any integer p. In the case p = 4, all cells are cubes and the result is the order-5 cubic honeycomb. The case p = 2 degenerates to the Euclidean cubic honeycomb.[6] Another four known ones are related to noncompact families. The tessellation File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 8.pngFile:CDel node.png consists of truncated cubes File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png and infinite order-8 triangular tilings File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 8.pngFile:CDel node.png. However the latter intersect the sphere at infinity orthogonally, having exactly the same curvature as the hyperbolic space, and can be replaced by mirror images of the remainder of the tessellation, resulting in a compact uniform honeycomb consisting only of the truncated cubes. (So they are analogous to the hemi-faces of spherical hemipolyhedra.)[6][7] Something similar can be done with the tessellation File:CDel nodes 11.pngFile:CDel split2-43.pngFile:CDel node.pngFile:CDel 8.pngFile:CDel node.png consisting of small rhombicuboctahedra File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png, infinite order-8 triangular tilings File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 8.pngFile:CDel node.png, and infinite order-8 square tilings File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 8.pngFile:CDel node.png. The order-8 square tilings already intersect the sphere at infinity orthogonally, and if the order-8 triangular tilings are augmented with a set of triangular prisms, the surface passing through their centre points also intersects the sphere at infinity orthogonally. After replacing with mirror images, the result is a compact honeycomb containing the small rhombicuboctahedra and the triangular prisms.[8] Two more such constructions were discovered in 2023. The first one arises from the fact that File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 6.pngFile:CDel node.png and File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 6.pngFile:CDel node.png have the same circumradius; the former has truncated octahedra File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png and order-6 square tilings File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 6.pngFile:CDel node.png, while the latter has cuboctahedra File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png and order-6 square tilings File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 6.pngFile:CDel node.png. A compact uniform honeycomb is taken by discarding the order-6 square tilings they have in common, using only the truncated octahedra and cuboctahedra. The second one arises from a similar construction involving File:CDel nodes 11.pngFile:CDel split2-53.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png (which has small rhombicosidodecahedra File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png, octahedra File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png, and order-4 pentagonal tilings File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png) and File:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png (which is the prism of the order-4 pentagonal tiling, having pentagonal prisms File:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png and order-4 pentagonal tilings File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png). These two likewise have the same circumradius, and a compact uniform honeycomb is taken by using only the finite cells of both, discarding the order-4 pentagonal tilings they have in common.[9] Another non-Wythoffian was discovered in 2021. It has as vertex figure a snub cube with 8 vertices removed and contains two octahedra and eight snub cubes at each vertex.[6] Subsequently Krieger found a non-Wythoffian with a snub cube as the vertex figure, containing 32 tetrahedra and 6 octahedra at each vertex, and that the truncated and rectified versions of this honeycomb are still uniform. In 2022, Richard Klitzing generalised this construction to use any snub File:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel p.pngFile:CDel node h.png as vertex figure: the result is compact for p=4 or 5 (with a snub cube or snub dodecahedral vertex figure respectively), paracompact for p=6 (with a snub trihexagonal tiling as the vertex figure), and hypercompact for p>6. Again, the truncated and rectified versions of these honeycombs are still uniform.[6] There are also other forms based on parallelepiped domains. Two known forms generalise the cubic-octahedral honeycomb, having distorted small rhombicuboctahedral vertex figures. One form has small rhombicuboctahedra, cuboctahedra, and cubes; another has small rhombicosidodecahedra, icosidodecahedra, and cubes. (The version with tetrahedral-symmetry polyhedra is the cubic-octahedral honeycomb, using cuboctahedra, octahedra, and cubes).[9]

Summary enumeration of compact uniform honeycombs

This is the complete enumeration of the 76 Wythoffian uniform honeycombs. The alternations are listed for completeness, but most are non-uniform.

Index Coxeter group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs
H1 BH¯3
[4,3,5]
File:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
[4,3,5]
File:CDel node c1.pngFile:CDel 4.pngFile:CDel node c2.pngFile:CDel 3.pngFile:CDel node c3.pngFile:CDel 5.pngFile:CDel node c4.png
15 File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
[1+,4,(3,5)+] (2) File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.png (= File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 10lu.png)
File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node.png
[4,3,5]+ (1) File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node h.png
H2 J¯3
[3,5,3]
File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
[3,5,3]
File:CDel node c1.pngFile:CDel 3.pngFile:CDel node c2.pngFile:CDel 5.pngFile:CDel node c3.pngFile:CDel 3.pngFile:CDel node c4.png
6 File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png
[2+[3,5,3]]
File:CDel node c1.pngFile:CDel 3.pngFile:CDel node c2.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel 3.pngFile:CDel node c1.png
5 File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png | File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png [2+[3,5,3]]+ (1) File:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.png
H3 DH¯3
[5,31,1]
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.png
[5,31,1]
File:CDel node c3.pngFile:CDel 5.pngFile:CDel node c4.pngFile:CDel split1.pngFile:CDel nodeab c1-2.png
4 File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 10lu.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 10lu.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 10lu.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 10lu.png
[1[5,31,1]]=[5,3,4]
File:CDel node c1.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel split1.pngFile:CDel nodeab c3.pngFile:CDel node c1.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel 3.pngFile:CDel node c3.pngFile:CDel 4.pngFile:CDel node h0.png
(7) File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png [1[5,31,1]]+
=[5,3,4]+
(1) File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel split1.pngFile:CDel nodes hh.png
H4 AB^3
[(4,3,3,3)]
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.png
[(4,3,3,3)] 6 File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.png | File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label4.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 11.png
[2+[(4,3,3,3)]]
File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.png
3 File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.png | File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 11.png | File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.png [2+[(4,3,3,3)]]+ (1) File:CDel label4.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.png
H5 K¯3
[5,3,5]
File:CDel node.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png
[5,3,5]
File:CDel node c1.pngFile:CDel 5.pngFile:CDel node c2.pngFile:CDel 3.pngFile:CDel node c3.pngFile:CDel 5.pngFile:CDel node c4.png
6 File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.png
[2+[5,3,5]]
File:CDel branch c1.pngFile:CDel 5a5b.pngFile:CDel nodeab c2.png
3 File:CDel node 1.pngFile:CDel 5.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 5.pngFile:CDel node 1.png | File:CDel node.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node.png | File:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 5.pngFile:CDel node 1.png [2+[5,3,5]]+ (1) File:CDel node h.pngFile:CDel 5.pngFile:CDel node h.pngFile:CDel 3.pngFile:CDel node h.pngFile:CDel 5.pngFile:CDel node h.png
H6 AH^3
[(5,3,3,3)]
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.png
[(5,3,3,3)] 6 File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.png | File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label5.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.png | File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 11.png
[2+[(5,3,3,3)]]
File:CDel label5.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.png
3 File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.png | File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 11.png | File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.png [2+[(5,3,3,3)]]+ (1) File:CDel label5.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.png
H7 BB^3
[(3,4)[2]]
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png
[(3,4)[2]] 2 File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png | File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
[2+[(3,4)[2]]]
File:CDel label4.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c2-1.pngFile:CDel label4.png
1 File:CDel label4.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png
[2+[(3,4)[2]]]
File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.pngFile:CDel label4.png
1 File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png
[2+[(3,4)[2]]]
File:CDel label4.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c1-2.pngFile:CDel label4.png
1 File:CDel label4.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png [2+[(3+,4)[2]]] (1) File:CDel label4.pngFile:CDel branch h0r.pngFile:CDel 3ab.pngFile:CDel branch h0l.pngFile:CDel label4.png
[(2,2)+[(3,4)[2]]]
File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c1.pngFile:CDel label4.png
1 File:CDel label4.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png [(2,2)+[(3,4)[2]]]+ (1) File:CDel label4.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.pngFile:CDel label4.png
H8 BH^3
[(5,3,4,3)]
File:CDel label4.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png
[(5,3,4,3)] 6 File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png | File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png | File:CDel label5.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png | File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png | File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label4.png | File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png
[2+[(5,3,4,3)]]
File:CDel label4.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.pngFile:CDel label5.png
3 File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label4.png | File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png | File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label4.png [2+[(5,3,4,3)]]+ (1) File:CDel label5.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.pngFile:CDel label4.png
H9 HH^3
[(3,5)[2]]
File:CDel label5.pngFile:CDel branch.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png
[(3,5)[2]] 2 File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png | File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label5.png
[2+[(3,5)[2]]]
File:CDel label5.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c2-1.pngFile:CDel label5.png
1 File:CDel label5.pngFile:CDel branch 01r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label5.png
[2+[(3,5)[2]]]
File:CDel label5.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c2.pngFile:CDel label5.png
1 File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch.pngFile:CDel label5.png
[2+[(3,5)[2]]]
File:CDel label5.pngFile:CDel branch c1-2.pngFile:CDel 3ab.pngFile:CDel branch c1-2.pngFile:CDel label5.png
1 File:CDel label5.pngFile:CDel branch 10r.pngFile:CDel 3ab.pngFile:CDel branch 10l.pngFile:CDel label5.png
[(2,2)+[(3,5)[2]]]
File:CDel label5.pngFile:CDel branch c1.pngFile:CDel 3ab.pngFile:CDel branch c1.pngFile:CDel label5.png
1 File:CDel label5.pngFile:CDel branch 11.pngFile:CDel 3ab.pngFile:CDel branch 11.pngFile:CDel label5.png [(2,2)+[(3,5)[2]]]+ (1) File:CDel label5.pngFile:CDel branch hh.pngFile:CDel 3ab.pngFile:CDel branch hh.pngFile:CDel label5.png

See also

Notes

  1. Humphreys, 1990, page 141, 6.9 List of hyperbolic Coxeter groups, figure 2 [1]
  2. 2.0 2.1 Felikson, 2002
  3. Wendy Y. Krieger, Walls and bridges: The view from six dimensions, Symmetry: Culture and Science Volume 16, Number 2, pages 171–192 (2005) [2]
  4. 4.0 4.1 "Spd{3,5,3".}
  5. "Pd{3,5,3".}
  6. 6.0 6.1 6.2 6.3 6.4 "Hyperbolic Tesselations".
  7. "x4x3o8o".
  8. "lt-o8o4xb3x".
  9. 9.0 9.1 "Hyperbolic Tessellations – Triangular Prismatic Domains".

References