1 33 honeycomb

From The Right Wiki
Jump to navigationJump to search
133 honeycomb
(no image)
Type Uniform tessellation
Schläfli symbol {3,33,3}
Coxeter symbol 133
Coxeter-Dynkin diagram File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
or File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png
7-face type 132 File:Gosset 1 32 petrie.svg
6-face types 122File:Gosset 1 22 polytope.svg
131File:Demihexeract ortho petrie.svg
5-face types 121File:Demipenteract graph ortho.svg
{34}File:5-simplex t0.svg
4-face type 111File:Cross graph 4.svg
{33}File:4-simplex t0.svg
Cell type 101File:3-simplex t0.svg
Face type {3}File:2-simplex t0.svg
Cell figure Square
Face figure Triangular duoprism
File:3-3 duoprism.png
Edge figure Tetrahedral duoprism
Vertex figure Trirectified 7-simplex File:7-simplex t3.svg
Coxeter group E~7, [[3,33,3]]
Properties vertex-transitive, facet-transitive

In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of 132 facets.

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram.

File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png

Removing a node on the end of one of the 3-length branch leaves the 132, its only facet type.

File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3a.pngFile:CDel nodea.png

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the trirectified 7-simplex, 033.

File:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png

The edge figure is determined by removing the ringed nodes of the vertex figure and ringing the neighboring node. This makes the tetrahedral duoprism, {3,3}×{3,3}.

File:CDel nodes 11.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png

Kissing number

Each vertex of this polytope corresponds to the center of a 6-sphere in a moderately dense sphere packing, in which each sphere is tangent to 70 others; the best known for 7 dimensions (the kissing number) is 126.

Geometric folding

The E~7 group is related to the F~4 by a geometric folding, so this honeycomb can be projected into the 4-dimensional demitesseractic honeycomb.

E~7 F~4
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
{3,33,3} {3,3,4,3}

E7* lattice

E~7 contains A~7 as a subgroup of index 144.[1] Both E~7 and A~7 can be seen as affine extension from A7 from different nodes: File:Affine A7 E7 relations.png The E7* lattice (also called E72)[2] has double the symmetry, represented by [[3,33,3]]. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb.[3] The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74:

File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 10l.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 01l.png = File:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 10lr.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node 1.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 01lr.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png = dual of File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png.

Related polytopes and honeycombs

The 133 is fourth in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The final is a noncompact hyperbolic honeycomb, 134.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 E~7=E7+ T¯8=E7++
Coxeter
diagram
File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 2.pngFile:CDel node 1.png File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01l.png File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.png File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [[33,3,1]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph File:5-simplex t0.svg File:Demihexeract ortho petrie.svg File:Up2 1 32 t0 E7.svg - -
Name 13,-1 130 131 132 133 134

Rectified 133 honeycomb

Rectified 133 honeycomb
(no image)
Type Uniform tessellation
Schläfli symbol {33,3,1}
Coxeter symbol 0331
Coxeter-Dynkin diagram File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 10.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
or File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png
7-face type Trirectified 7-simplex
Rectified 1_32
6-face types Birectified 6-simplex
Birectified 6-cube
Rectified 1_22
5-face types Rectified 5-simplex
Birectified 5-simplex
Birectified 5-orthoplex
4-face type 5-cell
Rectified 5-cell
24-cell
Cell type {3,3}
{3,4}
Face type {3}
Vertex figure {}×{3,3}×{3,3}
Coxeter group E~7, [[3,33,3]]
Properties vertex-transitive, facet-transitive

The rectified 133 or 0331, Coxeter diagram File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png has facets File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3b.pngFile:CDel nodeb.png and File:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png, and vertex figure File:CDel node 1.pngFile:CDel 2.pngFile:CDel nodes 11.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png.

See also

Notes

  1. N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294
  2. "The Lattice E7".
  3. The Voronoi Cells of the E6* and E7* Lattices Archived 2016-01-30 at the Wayback Machine, Edward Pervin

References

Space Family A~n1 C~n1 B~n1 D~n1 G~2 / F~4 / E~n1
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21