3 31 honeycomb
331 honeycomb | |
---|---|
(no image) | |
Type | Uniform tessellation |
Schläfli symbol | {3,3,3,33,1} |
Coxeter symbol | 331 |
Coxeter-Dynkin diagram | File:CDel nodea 1.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png |
7-face types | 321 File:E7 graph.svg {36} File:7-simplex t0.svg |
6-face types | 221File:E6 graph.svg {35}File:6-simplex t0.svg |
5-face types | 211File:Cross graph 5.svg {34}File:5-simplex t0.svg |
4-face type | {33}File:4-simplex t0.svg |
Cell type | {32}File:3-simplex t0.svg |
Face type | {3}File:2-simplex t0.svg |
Face figure | 031 File:5-simplex t1.svg |
Edge figure | 131 File:6-demicube.svg |
Vertex figure | 231 File:Gosset 2 31 polytope.svg |
Coxeter group | , [33,3,1] |
Properties | vertex-transitive |
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.
Construction
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram.
- File:CDel nodea 1.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
Removing the node on the short branch leaves the 6-simplex facet:
- File:CDel nodea 1.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
Removing the node on the end of the 3-length branch leaves the 321 facet:
- File:CDel nodea 1.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 231 polytope.
- File:CDel nodea 1.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
The edge figure is determined by removing the ringed node and ringing the neighboring node. This makes 6-demicube (131).
- File:CDel nodea 1.pngFile:CDel 3a.pngFile:CDel branch.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
The face figure is determined by removing the ringed node and ringing the neighboring node. This makes rectified 5-simplex (031).
- File:CDel branch 10.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
The cell figure is determined by removing the ringed node of the face figure and ringing the neighboring nodes. This makes tetrahedral prism {}×{3,3}.
- File:CDel node 1.pngFile:CDel 2.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png
Kissing number
Each vertex of this tessellation is the center of a 6-sphere in the densest known packing in 7 dimensions; its kissing number is 126, represented by the vertices of its vertex figure 231.
E7 lattice
The 331 honeycomb's vertex arrangement is called the E7 lattice.[1] contains as a subgroup of index 144.[2] Both and can be seen as affine extension from from different nodes: File:Affine A7 E7 relations.png The E7 lattice can also be expressed as a union of the vertices of two A7 lattices, also called A72:
- File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 10l.png = File:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png ∪ File:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node 1.png
The E7* lattice (also called E72)[3] has double the symmetry, represented by [[3,33,3]]. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb.[4] The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74:
- File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 10l.png ∪ File:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 01l.png = File:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png ∪ File:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 10lr.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png ∪ File:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node 1.png ∪ File:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes 01lr.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel split2.pngFile:CDel node.png = dual of File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.pngFile:CDel 3ab.pngFile:CDel nodes.png.
Related honeycombs
It is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.
See also
References
- ↑ "The Lattice E7".
- ↑ N.W. Johnson: Geometries and Transformations, (2018) Chapter 12: Euclidean symmetry groups, p 177
- ↑ "The Lattice E7".
- ↑ The Voronoi Cells of the E6* and E7* Lattices Archived 2016-01-30 at the Wayback Machine, Edward Pervin
- H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1] GoogleBook
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- R. T. Worley, The Voronoi Region of E7*. SIAM J. Discrete Math., 1.1 (1988), 134-141.
- Conway, John H.; Sloane, Neil J. A. (1998). Sphere Packings, Lattices and Groups ((3rd ed.) ed.). New York: Springer-Verlag. ISBN 0-387-98585-9. p124-125, 8.2 The 7-dimensinoal lattices: E7 and E7*
- Klitzing, Richard. "7D Heptacombs x3o3o3o3o3o3o *d3o - naquoh".
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |