1 52 honeycomb
From The Right Wiki
Jump to navigationJump to search
In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family.
Construction
It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram.
- File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
Removing the node on the end of the 2-length branch leaves the 8-demicube, 151.
- File:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
Removing the node on the end of the 5-length branch leaves the 142.
- File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel branch 01lr.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 8-simplex, 052.
- File:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea 1.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png
Related polytopes and honeycombs
See also
References
- Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
- Coxeter Regular Polytopes (1963), Macmillan Company
- Regular Polytopes, Third edition, (1973), Dover edition, ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1] GoogleBook
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |