Tetrahexagonal tiling
From The Right Wiki
(Redirected from Rhombic hexahexagonal tiling)
Tetrahexagonal tiling | |
---|---|
Tetrahexagonal tiling Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (4.6)2 |
Schläfli symbol | r{6,4} or rr{6,6} r(4,4,3) t0,1,2,3(∞,3,∞,3) |
Wythoff symbol | 2 | 6 4 |
Coxeter diagram | File:CDel node.pngFile:CDel 6.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png or File:CDel node 1.pngFile:CDel split1-64.pngFile:CDel nodes.png File:CDel node 1.pngFile:CDel 6.pngFile:CDel node.pngFile:CDel 6.pngFile:CDel node 1.png or File:CDel node.pngFile:CDel split1-66.pngFile:CDel nodes 11.png File:CDel branch 11.pngFile:CDel split2-44.pngFile:CDel node.png File:CDel nodes 11.pngFile:CDel 3a3b-cross.pngFile:CDel nodes 11.png |
Symmetry group | [6,4], (*642) [6,6], (*662) [(4,4,3)], (*443) [(∞,3,∞,3)], (*3232) |
Dual | Order-6-4 quasiregular rhombic tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol r{6,4}.
Constructions
There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the [6,4] kaleidoscope. Removing the last mirror, [6,4,1+], gives [6,6], (*662). Removing the first mirror [1+,6,4], gives [(4,4,3)], (*443). Removing both mirror as [1+,6,4,1+], leaving [(3,∞,3,∞)] (*3232).
Symmetry
The dual tiling, called a rhombic tetrahexagonal tiling, with face configuration V4.6.4.6, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*3232), shown here in two different centered views. Adding a 2-fold rotation point in the center of each rhombi represents a (2*32) orbifold.
- File:Hyperbolic domains 3232.pngFile:Ord64 qreg rhombic til.pngFile:H2chess 246a.pngFile:Order-6 hexagonal tiling and dual.png
Related polyhedra and tiling
*n42 symmetry mutations of quasiregular tilings: (4.n)2 | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *4n2 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] |
[ni,4] | |
Figures | File:Uniform tiling 432-t1.png | File:Uniform tiling 44-t1.png | File:H2-5-4-rectified.svg | File:H2 tiling 246-2.png | File:H2 tiling 247-2.png | File:H2 tiling 248-2.png | File:H2 tiling 24i-2.png | |
Config. | (4.3)2 | (4.4)2 | (4.5)2 | (4.6)2 | (4.7)2 | (4.8)2 | (4.∞)2 | (4.ni)2 |
Symmetry mutation of quasiregular tilings: (6.n)2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *6n2 [n,6] |
Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||||||
*632 [3,6] |
*642 [4,6] |
*652 [5,6] |
*662 [6,6] |
*762 [7,6] |
*862 [8,6]... |
*∞62 [∞,6] |
[iπ/λ,6] | ||||
Quasiregular figures configuration |
File:Uniform tiling 63-t1.svg 6.3.6.3 |
File:H2 tiling 246-2.png 6.4.6.4 |
File:H2 tiling 256-2.png 6.5.6.5 |
File:H2 tiling 266-2.png 6.6.6.6 |
File:H2 tiling 267-2.png 6.7.6.7 |
File:H2 tiling 268-2.png 6.8.6.8 |
File:H2 tiling 26i-2.png 6.∞.6.∞ |
6.∞.6.∞ | |||
Dual figures | |||||||||||
Rhombic figures configuration |
File:Rhombic star tiling.svg V6.3.6.3 |
File:H2chess 246a.png V6.4.6.4 |
File:Order-6-5 quasiregular rhombic tiling.png V6.5.6.5 |
File:H2 tiling 246-4.png V6.6.6.6 |
V6.7.6.7 |
File:H2chess 268a.png V6.8.6.8 |
File:H2chess 26ia.png V6.∞.6.∞ |
See also
Wikimedia Commons has media related to Uniform tiling 4-6-4-6.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.