Rhombitetraapeirogonal tiling

From The Right Wiki
Jump to navigationJump to search
Rhombitetraapeirogonal tiling
Rhombitetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.4.∞.4
Schläfli symbol rr{∞,4} or r{4}
Wythoff symbol 4 | ∞ 2
Coxeter diagram File:CDel node 1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png or File:CDel node.pngFile:CDel split1-i4.pngFile:CDel nodes 11.png
Symmetry group [∞,4], (*∞42)
Dual Deltoidal tetraapeirogonal tiling
Properties Vertex-transitive

In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.

Constructions

There are two uniform constructions of this tiling, one from [∞,4] or (*∞42) symmetry, and secondly removing the mirror middle, [∞,1+,4], gives a rectangular fundamental domain [∞,∞,∞], (*∞222).

Two uniform constructions of 4.4.4.∞
Name Rhombitetrahexagonal tiling
Image File:H2 tiling 24i-5.png File:Uniform tiling i222-t0123.png
Symmetry [∞,4]
(*∞42)
File:CDel node c1.pngFile:CDel infin.pngFile:CDel node c3.pngFile:CDel 4.pngFile:CDel node c2.png
[∞,∞,∞] = [∞,1+,4]
(*∞222)
File:CDel nodeab c1-2.pngFile:CDel ia2b-cross.pngFile:CDel nodeab c1-2.png
Schläfli symbol rr{∞,4} t0,1,2,3{∞,∞,∞}
Coxeter diagram File:CDel node 1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png File:CDel nodes 11.pngFile:CDel ia2b-cross.pngFile:CDel nodes 11.png

Symmetry

The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.

File:H2chess 24id.pngFile:Deltoidal tetraapeirogonal tiling.png

Related polyhedra and tiling

*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolic Paracomp.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*∞42
[∞,4]
Expanded
figures
File:Uniform tiling 432-t02.png File:Uniform tiling 44-t02.svg File:H2-5-4-cantellated.svg File:Uniform tiling 64-t02.png File:Uniform tiling 74-t02.png File:Uniform tiling 84-t02.png File:H2 tiling 24i-5.png
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 ∞.4.4.4
Rhombic
figures
config.
File:Spherical deltoidal icositetrahedron.png
V3.4.4.4
File:Uniform tiling 44-t0.svg
V4.4.4.4
File:H2-5-4-deltoidal.svg
V5.4.4.4
File:Deltoidal tetrahexagonal til.png
V6.4.4.4
File:Deltoidal tetraheptagonal til.png
V7.4.4.4
File:Deltoidal tetraoctagonal til.png
V8.4.4.4
File:Deltoidal tetraapeirogonal tiling.png
V∞.4.4.4
Paracompact uniform tilings in [∞,4] family
File:CDel node 1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png File:CDel node 1.pngFile:CDel infin.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png File:CDel node.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png File:CDel node 1.pngFile:CDel infin.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.png
File:H2 tiling 24i-1.png File:H2 tiling 24i-3.png File:H2 tiling 24i-2.png File:H2 tiling 24i-6.png File:H2 tiling 24i-4.png File:H2 tiling 24i-5.png File:H2 tiling 24i-7.png
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
File:CDel node f1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png File:CDel node f1.pngFile:CDel infin.pngFile:CDel node f1.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node f1.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node f1.pngFile:CDel 4.pngFile:CDel node f1.png File:CDel node.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node f1.png File:CDel node f1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node f1.png File:CDel node f1.pngFile:CDel infin.pngFile:CDel node f1.pngFile:CDel 4.pngFile:CDel node f1.png
File:H2chess 24ib.png File:H2chess 24if.png File:H2chess 24ia.png File:H2chess 24ie.png File:H2chess 24ic.png File:H2chess 24id.png File:H2checkers 24i.png
V∞4 V4.∞.∞ V(4.∞)2 V8.8.∞ V4 V43.∞ V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)
File:CDel node h1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png
= File:CDel branch 10ru.pngFile:CDel split2-44.pngFile:CDel node.png
File:CDel node h.pngFile:CDel infin.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node h.png File:CDel node.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h1.png
= File:CDel node.pngFile:CDel split1-ii.pngFile:CDel nodes 10lu.png
File:CDel node h.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node h.png File:CDel node h.pngFile:CDel infin.pngFile:CDel node h.pngFile:CDel 4.pngFile:CDel node h.png
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
File:H2 tiling 44i-1.png File:Uniform tiling i42-h01.png File:H2 tiling 2ii-1.png File:Uniform tiling i42-snub.png
Alternation duals
File:CDel node fh.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png File:CDel node fh.pngFile:CDel infin.pngFile:CDel node fh.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node fh.pngFile:CDel 4.pngFile:CDel node.png File:CDel node.pngFile:CDel infin.pngFile:CDel node fh.pngFile:CDel 4.pngFile:CDel node fh.png File:CDel node.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node fh.png File:CDel node fh.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node fh.png File:CDel node fh.pngFile:CDel infin.pngFile:CDel node fh.pngFile:CDel 4.pngFile:CDel node fh.png
File:H2chess 44ib.png File:H2 tiling 2ii-4.png
V(∞.4)4 V3.(3.∞)2 V(4.∞.4)2 V3.∞.(3.4)2 V∞ V∞.44 V3.3.4.3.∞

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links