Rhombitetraapeirogonal tiling
From The Right Wiki
Jump to navigationJump to search
Rhombitetraapeirogonal tiling | |
---|---|
Rhombitetraapeirogonal tiling Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.4.∞.4 |
Schläfli symbol | rr{∞,4} or |
Wythoff symbol | 4 | ∞ 2 |
Coxeter diagram | File:CDel node 1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png or File:CDel node.pngFile:CDel split1-i4.pngFile:CDel nodes 11.png |
Symmetry group | [∞,4], (*∞42) |
Dual | Deltoidal tetraapeirogonal tiling |
Properties | Vertex-transitive |
In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.
Constructions
There are two uniform constructions of this tiling, one from [∞,4] or (*∞42) symmetry, and secondly removing the mirror middle, [∞,1+,4], gives a rectangular fundamental domain [∞,∞,∞], (*∞222).
Name | Rhombitetrahexagonal tiling | |
---|---|---|
Image | File:H2 tiling 24i-5.png | File:Uniform tiling i222-t0123.png |
Symmetry | [∞,4] (*∞42) File:CDel node c1.pngFile:CDel infin.pngFile:CDel node c3.pngFile:CDel 4.pngFile:CDel node c2.png |
[∞,∞,∞] = [∞,1+,4] (*∞222) File:CDel nodeab c1-2.pngFile:CDel ia2b-cross.pngFile:CDel nodeab c1-2.png |
Schläfli symbol | rr{∞,4} | t0,1,2,3{∞,∞,∞} |
Coxeter diagram | File:CDel node 1.pngFile:CDel infin.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node 1.png | File:CDel nodes 11.pngFile:CDel ia2b-cross.pngFile:CDel nodes 11.png |
Symmetry
The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.
Related polyhedra and tiling
*n42 symmetry mutation of expanded tilings: n.4.4.4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry [n,4], (*n42) |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4] |
*∞42 [∞,4] | |||||
Expanded figures |
File:Uniform tiling 432-t02.png | File:Uniform tiling 44-t02.svg | File:H2-5-4-cantellated.svg | File:Uniform tiling 64-t02.png | File:Uniform tiling 74-t02.png | File:Uniform tiling 84-t02.png | File:H2 tiling 24i-5.png | ||||
Config. | 3.4.4.4 | 4.4.4.4 | 5.4.4.4 | 6.4.4.4 | 7.4.4.4 | 8.4.4.4 | ∞.4.4.4 | ||||
Rhombic figures config. |
File:Spherical deltoidal icositetrahedron.png V3.4.4.4 |
File:Uniform tiling 44-t0.svg V4.4.4.4 |
File:H2-5-4-deltoidal.svg V5.4.4.4 |
File:Deltoidal tetrahexagonal til.png V6.4.4.4 |
File:Deltoidal tetraheptagonal til.png V7.4.4.4 |
File:Deltoidal tetraoctagonal til.png V8.4.4.4 |
File:Deltoidal tetraapeirogonal tiling.png V∞.4.4.4 |
See also
Wikimedia Commons has media related to Uniform tiling 4-4-4-i.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.